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ABSTRACT 

In the past fifteen years considerable progress has been made in first 

swing power system transient stability assessment using the transient 
energy fiinction (TEF) method. 

The accuracy of stability assessment provided by the TEF method 
depends on the determination of the controlling unstable equilibrium point 

(UEP). The technique that determines the controlling UEP in the current 
commercial version (Version 3.0) of the TEF method program is based on the 

so-called 'exit point method' and has also been recently labeled the 'BCU 
method.' 

The exit point method consists of two basic steps. They are the 
detection of the exit point 0® and detection of the minimum gradient point 6°. 

The controlling UEP is solved for by using 0° as an initial guess. 

It has been observed that this method lacks robustness in the sense 
that the following two problems may occur. 

Problem 1: There may be no detection of the point 6°. 
Problem 2: If 0° is found, it may not be in the domain of convergence 

of 6" for the particular solving algorithm used. Hence, 

another equilibrium point, not the controlling UEP will be 
located. 

The result of this research has been the development of a new 
numerical technique for determining the controlling UEP. With the exit 

point as an initial starting point this technique efficiently produces a 
sequence of points. A significant part of this dissertation was the 

formulation of an analytical foundation which shows that under certain 
assumptions this sequence will converge to the controlling UEP. Hence this 
new technique exhibits a substantial improvement over the exit point method 
because of the following reasons 
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• The technique does not attempt to detect the point 6°. 

• The technique can produce a point that is close to 0" thus avoiding a 

domain of convergence problem. 

This technique was applied to two realistic, large-scale power systems. 
In every case an accurate stability assessment was provided. 
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1, INTRODUCTION 

1.1 The Need for Transient Stability Analysis of Power Systems 

Transient stability analysis involves the study of electric power system 
characteristics and parameters under the effect of large disturbances so that 

a stability assessment can be made. These large disturbances may be caused 
by such events as: a sudden change in load, a three-phase fault on a major 

transmission facility, and line outages in which the lines are heavily loaded. 
The system parameters that are usually monitored are synchronous 
generator angle, voltage at various buses, power flow over transmission lines 

and the apparent impedance seen by out-of-step relays. Typically, the 

stability assessment can be made by examining the relative angles of the 
synchronous generators during the transient period and stability is 

maintained if the generators remain in synchronism. 
Transient stability of a power system is a concept that is part of power 

system security. In turn, the concept of power system security is 

encompassed by power system reliability. The North American Reliability 
Council (NERO defines reliability in a power system as [1]: 

Reliability, in a bulk electric system, is the degree to which the 

performance of the elements of that system results in electricity 

being delivered to customers within accepted standards and in 

the amount desired. The degree of reliability may be measured 

by the frequency, duration, and magnitude of adverse effects on 
the electric supply (or service to customers). 

Bulk electric system reliability can be addressed by considering 

two basic and functional aspects of the bulk electric system -

adequacy and security. 
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Thus, it is important that the power system retain this sense of 
reliability at all times. As the definition implies, reliability criteria need to be 
met both at steady-state operating conditions and through transient periods. 

Reliability can be approached by considering two basic and functional 
aspects of the electric power system, adequacy and security. This suggests 

that one very important criterion is that the bulk power supply in North 
America be planned and operated with security in mind. NERC defines 
power system security as [1]: 

Security is the ability of the bulk electric system to withstand 

sudden disturbances such as electric short circuits or 
unanticipated loss of system components. 

For a power system to be secure it must be stable (either steady-state or 
transient); this implies that power system transient stability is a vital 

concern in power system security. Transient stability of a power system is 
defined as [2]: 

A power system is transiently stable for a particular steady-state 

operating condition and for a particular disturbance if, following 

that disturbance, it reaches an acceptable steady-state operating 

condition. 

Transient stability analysis studies usually involve time simulation in 
which numerical integration of the differential equations that govern the 
dynamics of synchronous generators as well the solution of the algebraic 

equations that describe the network are performed. These studies are 

performed off-line and are performed on a limited number of contingency 
scenarios. One outcome of the studies is the determination the critical 

clearing time of each of these contingencies. The critical clearing time is the 
maximum clearing time of a disturbance such that the power system still 
remains stable. In the North American interconnection, a large majority of 
the utilities do not set operating guidelines based on critical clearing times. 
Since most disturbances are cleared by relays or circuit breakers with preset 
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clearing times, the guidelines are normally based on stability limits and 
these limits are important to determine through these studies. Stability 

limits are usually limits on power flow across certain high voltage 

transmission lines and generation output of certain plants such that if the 
power system was being operated at these limits and a disturbance did occur 

somewhere in the system the clearing time of the preset relays would result 
in the system being unstable. 

Power system operators are interested in such studies since it is their 

responsibility that the power system remain secure at all times in the sense 

that not only does the system need to remain stable but all reliability criteria 

need to be met. If reliability criteria are violated, then remedial actions must 

be taken and these actions will be manifested through such things as proper 

operation of controls and protective equipment, adequate sources of real and 

reactive power when needed and so on. Since the operating point of the 

electric power system is an ever changing entity due to such occurrences as 

load changes and economical dispatching of generation the operator is not 
only concerned about the security of the system at the present moment but 

also the security of the system as it moves and settles to a new operating 
point. Information compiled from these off-line studies are available to the 

operator so operating decisions can be made with security in mind. Planning 

engineers also conduct many transient stability studies in planning further 

additions to the power system. Their primary concern is that new additions 

to the power system do not decrement the stability properties of the system 

and to make sure all of the reliability criteria, which apply to dynamic system 

performance, are met. 

In today's modem power system there is not only a need for transient 

stability analysis but a need for a much more diverse type of transient 

stability analysis by the operators and planners. The reason is that modem 

power systems such as the North American interconnected power system are 
becoming more stressed in the sense that in certain areas generation as well 

as transmission facilities are loaded at or above their rated capability or 

operating limits. There are many reasons why these stressed conditions 

exist and power systems are operating at or near their limits: 
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• Heavier use of existing transmission facilities because of the policy to 

conserve oil and natural gas which has resulted in limited operation of 
oil-fired and gas-fired power plants. The increased dependence on 
other types of plants has resulted in shipment of large blocks of 

economy power to load centers over high capacity transmission lines. 

• Fewer high voltage transmission lines are being built because of: right 
of way restrictions, regulatory delays, and the high capital costs 
incurred. 

• Heavier loading of transmission lines has become so common that 

some transmission lines which had been built for emergency use are 
now often being used for normal operation. Because of this heavy 
loading, the transmission network operates in a stressed condition. 

If the power system is stressed and thus displays the above mentioned 

conditions, it may exhibit very different dynamic behavior from an 
unstressed system during a transient. For example, in the case of an 
unstressed system, the transient behavior of the system due to a disturbance 

is easy to analyze because the behavior is dominated by the effects of location 
and duration of the disturbance itself. For the reliability criteria to be upheld 

in this case, limits may be placed on the duration of the disturbance and on 

the power being generated by units close to the disturbance. 
In contrast, a stressed system may behave quite differently and 

manifest a complex dynamic behavior. These stressed conditions arise fi'om 

the large power transfers and heavy loading of the transmission network as 

stated earlier. Typically, when a disturbance, such as a large three-phase 
fault, occurs in the stressed case, the dynamic behavior is initially controlled 

by the generators electrically close to the disturbance. As the transient 
progresses, the behavior may be dominated by generators that are remote 
from the disturbance. In fact, situations may arise in stressed systems in 

which the post-disturbance system is not even steady-state stable [2]. It 

follows directly that the analysis of this situation becomes more complex than 
that of the unstressed case. 
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1.2 Need for Direct Methods of Transdent Stability Assessment 

It is quite clear that the power system operator and planner are faced 

with a power system that is quite large and complex. In particular, the 
operator is faced with the problem that a large disturbance can occur at a 
great number of locations in the system and there are almost an infinite 

number of possible operating states. Also, since in many stressed situations 

the dynamic performance of the system can be quite complex and even 
unpredictable there is no guarantee that the off-line analysis can give any 
help to the system operators in making decisions concerning system security. 
Faced with this dilemma, it might be in the best interest of the system 

operator to have a near real-time transient stability analysis tool that provides 
the means of assessing transient stability on-line. Also, since the power 

system is usually operating near its limits a qualitative measure of the 
degree of stability of the power system would also be of great help. In this way 

the operator does not have to rely entirely on off-line studies to make 
decisions. 

Realistically there are only a few transient stability analysis tools that 

the operator or planner could use. Four possible types of analysis tools, 

realistic or not, that might be of assistance if the operator is confronted with 
the problems stated above are given below. 

i) The dynamics of a power system are governed by a coupled set of 

nonlinear algebraic and differential equations. If the operator had 

available the explicit closed form solution to these differential and 
algebraic equations that describe the power system then the transient 
stability problem can be easily dealt with. A simple calculation could 

determine the system conditions at the end of clearing and then using 
this point another calculation would be needed to see if the system is 

stable or not. A measure to determine the degree of stability would be 

just as simple to calculate. The problem with this is that up to now no 
explicit form of a solution has been found. 
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ii) The transient stabihty problem could also be easily dealt with if the 

operator had available an analysis tool that did the following: at any 
point along the disturbed system trajectory a calculation could be made 

which provided explicit information for the assessment of transient 

stability. The assessment would be made under the assumption that 

the disturbance would be cleared at that point. Also a measure for the 

degree of stability could be easily obtained. Again the problem with this 

is that no such tool exist. 

iii) The operator does have time simulation techniques but these 

techniques are time consuming since the equations need to be 

simulated for a relatively long period of time for transient stability 
assessment to be made. Also, this analysis does not provide any 
measure for the degree of stability. 

iv) If the operator had a tool that would provide a good approximation to 

the assessment of transient stability, not be computationally 

burdensome and provide a measure of the degree of stability then this 

tool based on the above discussion would fulfill the needs of the 

operator. Such a tool does exist in the form of direct methods of 

transient stability assessment. 

Direct methods of transient stability analysis offer alternative means of 

assessing transient stability when compared to time simulation. Direct 

methods have the potential to provide a near-real time assessment of 

transient stability, and in addition, can provide information regarding 
relative degrees of stability at different operating configurations. 

The direct stability analysis based on the transient energy function 
(TEF) method is a potential candidate to meet requirements of near real-time 

transient stability evaluations. Therefore the TEF method is a potential 
candidate for near real-time transient stability assessment since it avoids 

time consuming step-by-step time domain simulation and provides a 

qualitative measure of the degree of system stability via an energy margin. 
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1.3 Review of Direct Methods of Transient Stability Analysis 

Direct methods consist of two primary groups. Methods that are based 
on some energy criterion that is used for transient stability analysis and 
methods that are based on the second or direct method of Lyapunov [3] which 

use this Lyapunov theory for transient stability analysis. These methods are 
related since nearly all the Lyapunov functions used are energy based. 

1.3.1 Early Work on Energy Functions 

The early work on direct methods was concerned with an energy 

criterion for transient stability analysis. The earliest energy method for 
transient stability analysis is the well-known equal area criterion for a single 

machine-infinite bus system. This criterion simply states that if all the 

kinetic energy acquired by the generator during the disturbed period can be 
converted into potential energy, after the disturbance is cleared, the system 
will be stable. Kimbark [4] gives a detailed treatment of this subject. 

Since the time of the equal area criterion many attempts have been 

made to extend this idea of an energy criterion to multi-machine systems. 

Overall, in the investigations of direct stability analysis there have been two 

main categories of interest: 1) development of functions which accurately 
represent the system energy, and 2) correctly identifying the critical value of 
this energy. The following is an overview of the main contributions to the 

area of direct stability analysis starting A-om the equal area criterion to the 
present day. 

In 1930 Gorev [5] (from the former Soviet Union) used the first integral 

of energy to obtain a criterion for power system stability for a three-machine 
system with zero transfer conductances. This criterion used a solution 

method equivalent to the determining of a region of stability for the stable 
equilibrium point. 

In 1947 Magnusson [6] developed a technique very similar to Gorev in 

which a three-machine system with zero transfer conductances were used. 
The significant difference between Magnusson's formulation and that of 
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Gorev's is that Magnusson derived a potential energy function with respect to 
the post-disturbance stable equilibrium point. 

In 1958 Aylett [7] proposed an energy integral criterion for multi-
machine systems. He analyzed the phase-plane trajectories of a multi-

machine system in which the classical model was employed and transfer 
conductances were omitted. Aylett points out by using a two-machine 

system, that there is a critical phase-plane trajectory which passes through 

the saddle point, which he called the separatrix (i.e., a manifold). A criterion 

for system stability was developed by examining the phase-plane trajectory. 

If the phase-plane trajectory started outside of the separatrix, it becomes 

unbounded, hence the system becomes unstable. Aylett also developed an 

energy integral for the system. He shows that the energy versus angle curve 
has two regions separated by a curve which passes through the saddle point. 

The stable situation corresponds to the region inside of the curve for which 

kinetic energy is less than potential energy. The unstable situation 
corresponds to the region outer to the curve for which the kinetic energy is 
greater than the potential energy. These regions introduce the concept of 

region of stability. The most significant aspect of this work is the formulation 

of a system of equations based on the inter-machine motion. 

In 1972 Tavora and Smith [8] dealt with the transient energy of a multi-
machine system and examined equilibrium points. They used the classical 

model with zero transfer conductances as well as the center of angle (now 

referred to as center of inertia) formulation for the swing equations. Using 

this model Tavora and Smith obtained an expression for the transient kinetic 

energy which the authors say determines stability. The authors suggested 

that for stability to be maintained, the trajectory, after the last phase of the 
disturbance, be confined to what they called a potential well. Thus they 

concluded that for stability to be maintained, the total energy of the disturbed 

motion must be less than that needed to escape firom the potential well. 
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1.3.2 Application ofLyapimov's Direct Method 

The work reported in Section 1.3.1 used the concept of an energy 

criterion in the analysis of transient stability for the power system and by the 

middle 1960's most work on power system stability analysis was refocused on 
direct methods consisting of Lyapimov functions. Lyapunov direct methods 
then emerged as a solution to the power system stability problem. Earlier 

work in this area was done by Gless [9] and El-Abiad and Nagappan [10]. 

Gless used an example of a single machine-infinite bus without 
transfer conductances and matched the results obtained by direct methods to 
those obtained by using the equal area criterion and Aylett's phase-plane 
technique. 

In Section 1.3.1 it was stated that an important issue in an energy 

criterion method was to determine the critical value of the energy. This idea 
of a critical value can also be applicable when a Lyapunov direct method 
based on energy is used. The critical value in this setting is usually the 

largest value of energy such that the conditions for stability as stated in the 
theorems of Lyapunov's direct method are satisfied. In 1966 El-Abiad and 
Nagappan developed a valid Lyapunov function for a multi-machine system 

without transfer conductances. They identified the unstable equilibrium 

point with the lowest potential energy as the unstable equilibrium which gave 

the critical energy. The stability region that resulted was bounded and all 

conditions from Lyapunov's direct method theory were satisfied. This 
procedure however, generally produced conservative estimates for transient 

stability assessment. They also developed a function with transfer 
conductances which they claim is a valid Lyapunov function since when the 

norm of the state vector is larger than some small constant the time 
derivative of the fiinction is negative semi-definite. However this cannot be 

considered a true Lyapunov function. 
Gupta and El-Abiad [11] worked on this problem and they showed that 

the unstable equilibrium point with the least potential energy may not be near 

the disturbed system trajectory at all. They used an unstable equilibrium 

point that was close to the disturbed trajectory for the critical value. 
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Up to this point nearly all of the power system models for which a valid 
Lyapunov function can be constructed neglected transfer conductances. It 
was shown by Sastry [12] that since the power system is reduced to the 

internal generator nodes the model is not realistic if the transfer 

conductances are neglected. In most situations if the transfer conductances 
are present then the resulting Lyapunov-like function has a path dependent 
integral where the path is the trajectory of the post-disturbance system. In 

fact, Willems [13] claims that the Lyapunov method cannot be applied when 
transfer conductances are present since this results in an indefinite time 

derivative of the candidate function. 

An attempt has been made by Uemura [14] to approximate the path 
dependent terms due to the transfer conductances by linear approximations. 

1.3.3 Improvements to the Direct Methods 

Because of the difficxilties transfer conductances present the focus in 

late 1970's on direct methods was again on developing a suitable energy 
function which could be expressed in terms of physical energy components 
but had a Lyapunov-like structure. 

Athay, Podmore et al. [15], in 1979 at System Control, Inc. (SCI) made 

significant progress towards the development of the so called transient 

energy function (TEF) method which is the basis of the method used at Iowa 

State University today. Notable accomplishments of this work are: 

• incorporation of the COI formulation and approximation of path 
dependent terms in the energy function, 

• determination of the relevant UEP in the direction of the system 
trajectory, and hence the determination of the critical transient 
energy, 

• investigation of the potential energy boundary surface (PEBS) which 

was first developed by Kakimoto et al. [16], 
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• use of extensive computer simulations to investigate energy behavior 
as well as other system functions at different instants in the transient. 

Although the work from SCI was a tremendous breakthrough, 

drawbacks were still evident. The procedure developed still provided 
conservative results for a wide range of faults locations. Intensive work by 
Fouad et al. [17,18] at Iowa State University led to the following findings: 

• Not all the excess kinetic energy at the instant of fault clearing 
contributes directly to the separation of critical machines from the rest 

of the system. This component of kinetic energy which accounts for the 
other inter-machine swings should be subtracted from the energy that 

need to be absorbed by the system for stability to be maintained. This 
gave way for what is known as the corrected kinetic energy. 

• When more than one generator tends to lose synchronism, instability 
is determined by the gross motion of these machines, i.e., by the motion 

of their center of inertia. 

• The concept of a controlling UEP for a particular system trajectory is a 

valid concept. 

• Not all the machines that are advanved (i.e., have angles greater than 
90 °) at the controlling UEP loss synchronism. 

Fouad et al. [19] also developed a criterion known as the mode of 

disturbance (MOD) method to identify the controlling UEP among several 

candidate UEPs. This innovative criterion accounts for two aspects of the 
transient dynamic behavior of the system namely: 

• the effect of the disturbance on various generators (i.e., fault location), 

• the energy absorbing capacity of the post-disturbance network. 
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Chiang et al. [20] verified the foundations of this procedure and 
presented a theoretical foundation for the direct method by providing a 

mathematical and physical reasoning for the existence of the controlling 
UEP. 

Chiang et al. [21] then showed that for a power system without transfer 
conductances the stability boundary is composed of the union of stable 
manifolds. A numerical scheme was suggested in order to determine the 
controlling UEP. In this method the associated gradient system was utilized 

along with a computational scheme suggested by Kakimoto [16]. The 
constant energy surface which passed through the controlling UEP was used 
to approximate the relevant stability boundary of the power system. The 

relevant stability boundary is the part of the stability boundary where the 
disturbed trajectory passes. This method is referred to as the exit point 

method but has recently also been called the BCU method [22]. This scheme 

consists of detecting the exit point of the associated gradient system along the 
projected disturbed trajectory. In actuality, this consists of finding the first 
maximum of potential energy that the disturbed trajectory encounters when 

projected into angle-space. The gradient system, with the exit point as the 
initial condition, is integrated to a point x, which is very close to the 

controlling UEP. Finally, the UEP is solved for with x as the starting point. 

The critical energy is then the potential energy at the controlling UEP. 
This exit point method described above is employed for identifying the 

controlling UEP, and hence the critical energy, in the TEF method. 
In 1982, Vittal [23] and Michel et al. [24] developed an individual 

machine energy function in order to identify the transient energy pulling a 
particular machine from the rest of the system. Michel et al. [24] have 

concluded that system separation does not depend on the total system energy, 
but rather on the transient energy of individual machines or groups of 

machines. However, the individual machine energies along the faulted 

trajectories need to be evaluated at each time step, thus increasing the 
computation time. 

There are two survey papers available on direct methods applied to 

power systems , Fouad [25, 1975] and Ribbens-Pavella, [26, 1985] and three 
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books on this subject, Fouad and Vittal [27, 1992] and Pai [28, 1988] and [29, 
1981]. 

1.4 Motivation, for the Present Work 

In the TEF method the exit point method is used to determine the 

controlhng UEP. The reason for this is that this method is computationally 
straightforward. It has been observed, however, while applying the TEF 

method to certain cases that the exit point method does not work correctly. 
There seems to be two problems that occur: 

1. The method does not produce an UEP but instead the stable 
equilibrium point. 

2. The method may not determine the controlling UEP but instead 
another unstable equilibrium point in which case an incorrect 
critical energy would result. 

1.5 Scope of this Research Work 

The main objectives of this research work are: 

1. develop a numerical procedure that when incorporated into the exit 

point method eliminates the above mentioned problems, 

2. under certain assumptions analytically justify the use of the 
procedure, 

3. apply the TEF method with this new procedure incorporated to 
large-scale realistic power systems to obtain transient stability 
assessment results and compare these with time simulation, 
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2. MATHEMATICAL MODEL 

The contents of this chapter consists of three sections with each having 
the following description. 

Section 2.1 The mathematical equations in center of inertia that 
model the dynamics of a generator for the classical model 
of a power system are presented. 

Section 2.2 The transient energy function is derived in the center of 
inertia. 

Section 2.3 A presentation of how the transient stability assessment is 
performed using the transient energy ftmction. 

2.1 System Equations 

The simplest model representing a multi-machine power system, 

called the classical model [30, Chapter 2], is used throughout this research 
project. This model is based on the following assumptions. 

1. Mechanical power input remains constant for each machine during 

the transient period. 
2. Damping or asynchronous torque is negligible. 

3. The synchronous machine can be represented by a constant voltage 
source behind the transient reactance. 

4. The motion of the machine rotor coincides with the angle of the voltage 

behind the transient reactance. 
5. Loads are represented by passive impedances. 
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The classical model of a synchronous machine may be used to study 

the stability of a power system in an inertial transient, during which the 
system dynamic response is dependent largely on the stored kinetic energy in 

the rotating masses and the synchronizing torques. For many power 

systems, the length of time of this transient is on the order of one second or 
less [30, Chapter 2]. 

With the loads represented by constant impedances, the load nodes and 

the terminal voltage nodes of the machines are eliminated. The resulting 
network contains only the internal machine nodes. The machine reactances 
and the constant impedance loads are included in the network admittance 

matrix (Ybus)-
Throughout the rest of this chapter variables to be defined such as 5, 6, 

CO,  and GJ are taken to be vectors unless they are subscripted with a i,j or k in 

which denotes the corresponding element in the vector. Based on the above 

assumptions, the nonlinear differential equations which are referred to as 
the swing equations that govern the dynamics of the n machine system are 
given by the following equations and the point 5® will denote the stable 

equilibrium point (SEP) for these equations 

'•^èi=Pi-Pei 
(Of. 

(2.1) 

di = OJi - (Or I ly . . . , /Z 

where 

Pi = Pmi - Ef Gii (2.1b) 

n 

(2.1c) 
j= i  
j 

Cij = Ei Ej Bij and Dy = Ei Ej Gij •I -%/ -"y <i i-,j 

and 
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n - number of machines in the power system, 

Gii - driving point conductance, 
Pmi - mechanical power input, 

Ei - internal voltage behind the transient reactance, 

Hi - normalized inertia constant, 
o)i - absolute machine rotor speed, 

(Or - speed of the synchronously rotating reference frame. 

Si - machine angle deviation with respect to a synchronously 

rotating reference frame, 
Gij - the real part of the transfer admittance in the system reduced 

to the internal nodes between machines i andj. 

Bij - the imaginary part of the transfer admittance in the system 
reduced to the internal nodes between machines i and j. 

Note, since damping is neglected for all machines the minimal order 
of the state-space of the n machine power system described by equation (2.1) is 
2(n-l) [31]. 

Transforming equations (2.1) into the center of inertial (COI) reference 

frame, provides a better physical insight to the transient stability problem 
formulation. This formulation conveniently removes the kinetic energy 

associated with the acceleration of the inertial center of the system during a 
transient [8]. In order to transform equations (2.1) to the COI reference 

frame, the following must be done. 

Define Mi and Mt as follows. 

n 
Mt = ^ Mi 

i = 1 

Let So be the center of inertia (COI) angle and define it as 
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Then 

A f , a ;  = » =  a . = j k r ;  3 C  A f ) d y - j g l : : ] [  J w , ( %  
J  =  1  J  =  I  ^  j - 1  

Define the new COI angles and speeds as 

9i= ôi- 5o 

UJi = ôi- 5o 

Then 

di = ôi - do CSi = Qi = ôi - 5o  ̂iHi = 6i = 5i - 5o = G)i - ùo 

nJi = cûi - ào =i' Mi nji = Mi o}i - Mi d>o 

Mi  U5 i -P i -  Pe i  -  Mi  à>o =  P i -  Pe i  -  X  i^J  •  ̂ e j )  

Define Pcoi as below, where P; and Pei are taken fi-om equations (2.1b) and 
(2.1c). 

n n n-1 n 

PC0I= X (Pi-Pei) = ^ Pi-X Dij COSiSi - 5j) 
i = 1 i = 1 i = 1 j=i+l 

It is evident that 

M tO}o= X MiO) i=  X (Pi  -  Pei)  = PcOI (2.3) 
i  = 1 i  = 1 
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Since Mt is the total inertia of the system and 5o is the center of inertia 

angle, Pcoi is then the power that accelerates the center of inertia of the 
system. 

Note that the vectors, 6 and (D, always satisfy the constraints of the 

inertial center reference frame. This can be seen as 

% Mi 6i=  ̂  Midi -  ^  Mi5o= % Midi-  ^  Mi 5i = 0 (2.4a) 
i = l  i  =  l  i  =  l  i = l  i = l  

Z  Z  M i k - f ,  M i 5 o =  £  M i è i - ^  X  M i 5 i  =  0  (2.4b) 
i  =  l  i  =  l  i = i  

The machine angle and the machine speed terms, and UJn 

derived from equations (2.4) are: 

n-l  

^n = -^^(Miei) (2.5a) 

n-l  

lUn — ' £ [Mi (2.5b) 
i  = l  

In the inertial center reference frame the nonlinear differential 

equations that govern the dynamics of the power system are shown below. 

M i  W i  =  P i -  P e i  -  P c o l  (2.6a) 
Mt 

6i = BJi i  -  1,  2, . . . ,  n-l  (2.6b) 

The point is transformed into the point 0® which denotes the SEP of the 

power system in the COI reference frame. 

Equation (2.6a) is very similar to equation (2.1), but in equation (2.6a) a 

fraction of Pcoi which is based on that machine's inertia is subtracted from 
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the right hand side. This subtraction over all the machines results in a total 
subtraction of PcOL Note that because of equations (2.4) the minimal order of 

the state-space of equations (2.6) is 2(n-l). Thus, throughout the rest of this 
research project, the order of the state-space representation will be (d,G5) = 

(61,62, . . ., 6n-i, Equations (2.6) with equation (2.5a) 

substituted in can be written explicitly as 

n-l  

Mi uSi = Pmi - Ef Gii - ^ [Cij sin [di - 6j)  + Dij cos [Bi - 0y)] 
j= i  
j ^ i  

-  Cin sin + M262 + • • •  +  Mn.l6n.li^ 

• Din cos 16; + -^-{Mi6i + M262 + • • •  +  Mn-ldn-^ 

S (Pmk-ElGkk) 

+ 2 #  Z  S  Di,jcoB(ei-eJ) 
k=l j== k+1  

n-l  

+ 2  ^kn  COS Idk  +  +  M262  H +  
T k - I * M-n I 

6i = fiJi i = 1, 2, ..., n-l (2.7) 

The right-hand side of equation (2.6a) is referred to as 

fi = Pi-Pei-^Pcoi (2.8) 
MT 

and note that 
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X fi = S X = fco/ - Pcoi = 0 

2.2 Transient Eneî  Function in the Center of Inertia Formulation 

As noted in Section 1.3.3 the TEF used at Iowa State University and in 
this dissertation is based on the function derived by Athay, Podmore et. al. 

[15]. This function is derived on the basis of the physical energy of the 
system. The contents of this section is a presentation of the derivation. It is 

shown that derivation can be put into a vector matrix form but for simplicity 
it is not derived in this fashion. 

Equation (2.6a) can be written as 

Mi SJi = Pai = Pi -  Pei  •  PcOI 
Mt 

where Pai is the accelerating power in per-unit. In reality though, the right 
hand side of equation (2.6a) should be accelerating torque Tai in per-unit. The 
reason equation (2.6a) is accelerating power is that since the speed CT is 

nearly constant during the first part of the transient period Pai is numerically 
equal to Tai in per-unit. 

The transient energy function which will be denoted as V(6,W) can be 

derived as follows. First it must be noted that for a machine, j T (d6(t)ldt) dt = 

energy, where 6(t) is the angle of the rotor and T is the torque on the rotor and 

because Pai = Tai in per-unit J P d6(t) I dt) dt = energy in per-unit. For each of 

the machines in the system the following equation always hold true with Pei 
and Pco/functions of the variable 6(t). 

Mi njid) Pi-Pei(e(t) ) - ^PcOl (B (t)) 
Mt 

= 0 (2.9) 

Let Q(i:), Q(x) and rbe the variables of integration corresponding to the 
variables Q(t), (Dit) and t respectively. Multiply both sides of equation (2.9) by 



www.manaraa.com

21 

((d0i(%) Idr) dv) and integrate the left hand side from T = 0 to T = ^ and sum over 

all machines in the power system. This integration depends on the path 
taken by ©(t) and £2(7) as t varies. Let this path be denoted by C. Let 
0(0),Q(0)) = (e^,0) and (Q(t),n(t)) = (9,(3) so that V(e, m) = V(G(t),n(t)). The 

integral takes the form 

n '  

v(Q(t),m) = Z I 
i  = 1 Jz = 0 

This can be written in the form 

Mi £2i(T) • Pi + Pei(e(v)) + ̂  Pcoi(0(r)) 
Mr dx 

dx (2.10) 

dx V(0(txm)) = Z [ [MiQi(t)-fi(e(t)}\ . 
i= l } t=0  

This also can be written as 

veefw,w; = z f Uiàcr j  ^§^dT+f  
t .  <1 .0  <' ' •  Lo  

i . i L o  L o  * 

Since 

Qi (T) dx= Qi (x )  dx  
dx dx 

the above equation can be written as 

n-l ( f T= t 
WSf«,«;;= É I M,S2 i (T )^^d l+ \  M„an(T)^%^dT  

i . t l r .O  Lo  
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-S f (2.11a) 
i  =  / A . o  h.o *  

Because of the following two COI constraint equations 

= ̂  \mi + . . .+ Mn-l  
dx Mn ^ dt dx ! 

fn(0(t)) = - {fl(0(x)) +...+ fn.l(0(x))) 

the previous equation for V(0(t),£2(t)) can be written in vector matrix form as 

V(0(t),n(t)) = f iXx)] • ^̂ 1 - \[M^f(0Cx))\ 
h=o^  dT J L dx  W 

dx (2.11b) 

with Q(x) = (QiCx),Qn-iNF, 0(x) = (0i(x),..., 0n.i(x))'randf(0(x)) = (fi(0(x)), 

fn.i(0(x)))'^. The matrices M® and are defined as 

M« = 
M/ if iVj 

M[f= 

-4  

A partial closed form solution for the function V(6,IU) can be produced 

if the previous time integral is transformed into a line integral. In equation 
(2.11a) the dx's can be canceled and the integration is taken over the path C 

from the SEP (6^,0) to the point (d,nj). The differential d0„ can be taken as 
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C?0„ + M202 + ••• + Mn.l©n-l)^ 

ï f f i  from equation (2.8) is explicitly used the term by term expression of 
equation (2.11a) takes the form as shown below. The first term has the form 

X I MiQi dOi = I" X  Cjf 
i = 1 J(9',0) C ^ i = i 

The second term takes the form 

" X j Pi = • X ^i) 
i = 1 J(e',0) C i=l 

The two integral terms above are path independent. The third term takes the 
form 

X I Pei dQi = X X I î iJ + Ay COS {Oc - <%)] dOi 
i = 1 J(B',0) C i = l j=l J( e ',0) c  

J ^ i  

Since Cy = Cji and sin(0i- Qj) = - sin(Qj - Qj) 

n n n-1 n 

X X • ĵ) = X X (̂ (0; - ©j) 
i = 1 j = 1 i = 1 j = i+1 

j * i  

The first part of the third term becomes 

n-1 n r(^i  •  

X X I Qy sin (©j - 0j) d(©i- ©j) 
i = 1 j= i+1 m - e]) c 
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= - X X Cy [cos (Oi - 6j) - cos (of - ^®)] 
i = ij = i+i 

and this term is path independent. Since Dij = Dji and cos(0i - 0j) = cos(0j - 0i) 

n n n -1 n 

X X = X X -̂ y  ̂
i = 1 j = 1 i = 1 j = i+1 

j * i  

The second part of the third term can then be formed as 

n n f(Si  +  ̂  

X X I îj " ĵ) 
i = i j= 1 J(e! + ej) c 

j ^ i  

n -1 n f(^i  + Sj)  

= X X I -̂ y (̂ t - d(̂ i + 
i  =  l j =  i + 1  M + BJ) C 

As noted above, the integral term associated with the term Cij is path 

independent, however, the integral term associated with the term Dij is path 

dependent. The limits of integration are also changed to reflect the 
differential d(-). 

Because of equation (2.4) the fourth and final term can be shown to be 

(e a) 

J(B',O) C 

r(8M r(B,(A) 

Ê #1  (Pj -Pe] \de i=  t  (PJ-P , j )MT i  = 0  
J (B\O) C J re ,O; C 
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The reason that the term associated with Dij is path dependent is the 

following. Integration of the vector field fi is path independent if there exist a 
scalar function W, such that fi = dW/ddi. If this W can be found the Hessian 
of W must be symmetric. It then follows that dfj I dOi = dfilddj, but since dcos(0; 
- dj)ldBj dcos(dj - 0i)ld6i this violates the symmetry condition. Therefore, W 

cannot be found and hence, there is path dependence. 

Integration of the right hand side in equation (2.9) results in a constant 
of integration which can be taken as V(d,W) when evaluated at some point 

(0,(D). Combining the above terms it can be seen that the transient energy 
function V(6, GJ) has two distinct components which are kinetic energy and 

potential energy, hence, 

V(Ô,GJ) = VKE(^) + YPE(^) 

where 

Vke((>^) = g X 
i  =  l  

and 

VPE(6) = - X 

i = 1 

n-1 n 

- X X Cij(cOS Oij- COS dij) 
i = 1 j = i+1 

where % = di - 6j. 
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The terms in the TEF have physical meaning and can be interpreted as 
follows. 

'' i = l 

represents the total change in kinetic energy of all machine rotors relative to 
COL 

S  P i ( e i - e i )  
i = l 

represents the total change in positional energy of all rotors relative to the 
COL 

- Cij[cos 6ij- cos 0|) 

represents the change in the stored magnetic energy of each branch i j .  

J^(9i + dj) 
Dij cos (é ^ - 0j\d(Qi+ Qj) 

(eî + ej) c 

represents the change in the dissipation energy of branch i j  due to the 
transfer conductance. 

When the power system experiences a transient there are usually 
three stages in which the system evolves. The first stage is the pre-

disturbance stage in the which the power system is at equilibrium. The 

second stage is the disturbed stage in which the state of the power system 
moves away from the equilibrium due to the disturbance. The final stage is 

the post-disturbance stage. An initial condition is imposed on this post-
disturbance power system due to the removal of the disturbance. Thus, given 

an initial condition it is this final stage for which transient stability is to be 
analyzed. 
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The TEF (2.11) was derived for this post-disturbance system. The lower 
limit of integration for the derivation was the post-disturbance SEP. The 

upper limit of integration represents the initial condition put on this system 

through the clearing of the disturbed trajectory. The TEF evaluated at this 
initial condition then represents the energy with respect to the post-
disturbance SEP that is injected into the system by the disturbance. As noted 
earlier, the last term of the TEF is path dependent and relies on a explicit 
path C from the post-disturbance SEP to the point (d,tn). Uemura, et. al. [14] 

developed a path that approximates this term which is based on a linear 
angle trajectory assumption. It has become standard practice in the TEF 

method to incorporate this linear angle trajectory. 
With this linear approximation employed, the TEF becomes 

= Pi(di  -  d!)  
"^1 = 1 i = i 

n-l n 

- % X Cy (cos dij  - COS 0^) 
i  =  l  j = M  

+ Z (2.13) 
i = 1 J = i+1 [Qij • Oijj 

There are two important points to note with regard to the TEF method. 

• The TEF, formulated relative to the COI, is of great advantage. The 
components of both the rotor kinetic energy and position energy 

contributing to the motion of the COI are subtracted. This removes the 

component of energy that has no effect on system stability. This aspect 
of the formulation improves the description of the transient energy 

used in stability assessment and accounts for the components of energy 
responsible for stability (or instability) more accurately [27]. 

• The direct method of Lyapunov is often used to determine stability of a 
dynamical system and this method can lead to an approximation of the 
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stability region of the system. However, the TEF is not a Lyapunov 
function because of the indefiniteness of the time derivative of V along 
the system trajectory. 

2.3 Transient Stability Assessment Using the TEF Method 

The assessment of transient stability through the application of the 
TEF method is performed by comparing two values of the transient energy, 
V, {V will now denote V(6, W) without loss of generality). The values of 

transient energy compared are the transient energy injected into the system 

through the disturbance and the critical energy of the post-disturbance 
system. In other words, the TEF is evaluated at (6p\up^), which is the state of 

the system at the clearing of the last disturbance, to measure the transient 
energy injected into the system. The TEF is then evaluated at 0" where 0" 

denotes the controlling UEP, to measure the critical energy of the post-
disturbance system, These TEF evaluations are shown below in equation 
(2.14). 

V'='- = V\ , . V"' = V 
(e",o) 

(2.14) 

Transient stability assessment is then performed by comparing these 
two values. If < ycr^ the system is stable and if > ycr^ the system is 

unstable. When = ycr the system is considered critically stable. In other 

words, if the post-disturbance system can absorb the energy that is injected 

into the system through the disturbance, the system will be stable, otherwise 
instability will occur. 

Alternatively, transient stabiHty assessment can be made by evaluating 
the energy margin AV which is 

AV = V"" •V''̂  = V 
(0",O) 
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The energy margin -dV" in terms of the TEF is 

- X X Cij(cos Oij - cos efj) 
i  =  l j= i+ l  

ri ' l  

1 
i  =  l j =  i + 1  

X A 
et - ef + fl" - ef 

{eS - efl 
(sin etj • sin e l j )  (2.16) 

Again, if AV > 0 the system is stable, otherwise instability occurs. The 

corrected kinetic energy is normally used in the energy margin calculation 
and this will be presented in a later chapter. 

The TEF method is said to assess the first swing transient stability of a 
power system. If a disturbance is such that the angle trajectory does not go 

unstable in the first swing the TEF method is thought to assess this situation 

as stable. However, this does not truly imply that the system is stable since 
instability can occur after two or more swings. 

Determining the critical value of the transient energy is the next step 
in the process of assessing transient stability. The contents of Chapter 4 is a 

description of a numerical method called the exit point method for 
determining the controlling UEP. The next chapter contains a description of 
two dynamical systems that are related to the system given in equation (2.6). 
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3. RELATED DYNAMICAL SYSTEMS 

The exit point method for determining the controlUng UEP is based on 

an underlying analytical foundation as given by Chiang et. al. [20] and [21]. 
Also a numerical procedure for implementing this method was given by 

Chiang et. al. [21], This analytical formulation is based on two dynamical 
systems and their relationship with each other. The first dynamical system 
is that describing an unrealistic multi-machine power system and will be 

referred to as the swing system. The second dynamical system is that of the 
associated gradient of the potential energy and will be referred to as the 
gradient system. 

The results from [20] and [21] need to be applied to this dissertation but 

cannot be applied directly. The reason for this is that the analytical 
formulation in [20] and [21] employed a multi-machine power system model 

that has no transfer conductances, damping present and an infinite bus 
present for a reference frame. The presence of the damping and the absence 
of the transfer conductances is necessary because a valid Lyapunov function 

can be found and this Lyapunov function is necessary in the analytical 

foundation. The model given by equation (2.6) has transfer conductances 
included, no damping and the system is in the COI reference frame. The 

transfer conductances can be omitted and the damping added to equation 
(2.6), but there is still a difference in the reference frame. Thus, the theory in 
[20] and [21] needs to be shown to hold when the multi-machine power system 

is in the COI reference fi'ame. 
The swing system is actually the modification of equations (2.6). The 

modification is the absence of the transfer conductances and the addition of 

damping in equations (2.6). Therefore, due to the absence of transfer 
conductances the swing system describes the dynamics of an unrealistic 
power system but this system is needed so that the analytical foundation 

shown in this chapter can be made. 



www.manaraa.com

31 

This chapter consists of three sections. The main results of the first 
section are the following. 

Section 3.1 The swing system is presented. The characterization of 
the stability boundary for the swing system is given. An 
approximation to the relevant stability boundary of the 
swing system is shown. Finally, a mathematical 
definition for the energy margin is given. 

Section 3.2 The associated gradient system and the characterization 
of the stability boundary for the gradient system are given. 

Section 3.3 The relationship between the swing system and the 
gradient system is presented. 

Throughout this chapter references [20] and [21] will be referred to 

quite firequently. When there needs to be a change made due to the equations 
being in the COI reference firame it will be given explicitly. 

3.1 The Swing System 

The material in this section is concerned with assumptions on and 
properties of the swing system which is the dynamical system generated by 

the set of nonlinear differential equations (3.1). This system is derived from 
the equations (2.1) and the derivation is given in Appendix A, Section A.l. 
This swing system will be considered to represent the post-disturbance power 

system. Note the damping coefficient Di and the absence of the transfer 
conductances. 

n-l 
Mi nJi = hi = Pi - Di cUi • ^ Cij sin {di - 6jj 

J = i  
j ^ i  



www.manaraa.com

32 

Cin sin 16; + ^ [M 161 + M2O2 + ••• + Mn-l6n-l^ 

6i - GJi i  =  l , 2 , n - 1  (3.1) 

Let 

n-1 

gi = Pi- % Cij sin (di - dj) 
J = i  

- Cin sin 1% + + M262 + ••• + Mn-lOn-l]^ 

Then equations (3.1) become 

Mi ini = hi =gi- Di GJi 

6i = CJi i = 1, 2, ..., n-1 (3.2) 

Note that gi = fi (2.8) when Dy = 0. It was also shown in Appendix A, Section 
A.l that 

n n 
% Pei = 0 and ^ Pi = 0 (3.3) 
1 = 7  i = 1  

and that these equations (3.3) imply that 

n-1 

gn — - gi 
£ = 7 

It is obvious that equations (3.1) have continuous first order partial 

derivatives. Hence, there exist a solution to equations (3.1) and this solution 
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is unique. In order to present an analytical foundation the following 
terminology is defined as in [31], [32] and [33]. 

(6^,0) e the swing system SEP. 

(p(6,nJ, t)  X xR —> xR^^'i^,  the solution of the swing 
system with initial condition (6,05) and (j)(6,OJ,0) = (6,nj). 

A(6^,0) c:R('^-^^ x R(^-i>, the stability region of the swing system. This 
is defined as {(6, Gf) : ^d,n5,t) ->(6^,0) as t -•> oo) 

dA(&,0) the stability boundary of the swing system. 

E the set of all equilibrium points for the swing system. 

EB the set which is the intersection of the set E and the stability 
b o u n d a r y  o f  t h e  s w i n g  s y s t e m ,  ( i . e . ,  E B  =  d A ( 6 ^ , 0 )  n E ) .  

W^(^,0) X R("'-^\  the stable manifold for the hyperbolic 
equilibrium point (^,0) defined as { (9,nj) : (p(d,nj,t) ->(6^,0) as t 
-> oo}, 

WH6^,0) cX R("--^^, the unstable manifold for the hyperbolic 
equilibrium point (6^,0) defined as { (6, W) •. <p(6, in,t) (6^,0) as t 

-O^}. 

3.1.1 Characterization of the Stability Boundary of the Swing System 

The following will lead to the characterization of the stability boundary 

of the swing system. 

Property 3.1.1 
The Jacobian of the swing system is a 2(n-l) x2(n-l) matrix of the form 
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0 I 

M'^ ^ - M'^D 
de 

and the matrices M and D are diagonal matrices with elements Mi and 
respectively. Assuming the matrix dglde is nonsingular at the 

equilibrium points of the swing system then these equilibrium points 

are hyperbolic. 

The proof is given in [20]. • 

Assumption 3.1.2 
Let (&,0) e EB. The intersection oiW^(6^,0) and W"^(&,0) satisfies 
the transversality condition for all (G^,0), (&,0) e EB. Here i may equal 

j. This simply means that the tangent spaces of the corresponding 
manifolds at the intersection point must span the space xR(n-i)^ 

Property 3.1.3 
There does exist a function V(e,W) for the swing system so that 

i) V((^e,m,t)) <0 V(0,lU) g E 

ii) 1Î (6,03) 0 E then the set {t e R: V((j)(6,(n,t)) -0} has measure 0 in 

R. In other words there is no interval [T;, Tg], T; < Tg, with t e 

\Ti, Ts] such that V((l)(e,in,t)) = 0. U (e,(n) ^ E and if V(e,GS) = 0 for 

s o m e  t j  t h e n  t h e  i n s t a n t  b e f o r e  t i , V  < 0  a n d  t h e  i n s t a n t  a f t e r  t j ,  
V < 0 .  

iii) V( (p(e,in,t)) is bounded implies (p(e,(n,t) is bounded. 

JuR ~ 

din 

de 

d [ M - ^ [ g -D(n\ 

de 

dm 

dm 

d[M-^[g -Dm]  

dm 
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The proof to parts ii) and iii) are given in [20]. Part i) can be shown by 

employing the energy function (2.12) with Dij = 0. The energy function 
now takes the form 

o X • s X X Cij[cos Oij - COS 6ij) (3.4) 
i = 1 i = 1 is I j = i+1 

With iDn and explicitly substituted in, equation (3.4) becomes 

a-J 
v= % X + • • • + {Un-lMn-lf  

n-1 

X Pi  + ̂ { {^1 -e^)Mi  +  • • •+  {On -l -  9 i i ]Mn .l) 
i= l  

n-1 n-1 

X X Cij(cos dij - COS etj) 
i = lj = i+l 

n-1 

• X + -̂ -{̂ 1^1 + * • • + Qn-l̂ n-1  ̂

n-1 

+ X Cin COS jef + ^(eiMi + • • • + eliMn-i))^ (3.5a) 

The energy function (3.4) is similar to the energy function given 
equation (2.12) and can be written simply as 

V = VKE + VpE 

with 

n-l  

yKE = ̂  ^ Mi + h-^i^lMl + • • • + (Un- lMn- l f  
^ i - 1 ^ 

(3.5b) 
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R-J _ 
VpE = • ^ Pi{di - Gi) + - 6j ] M 1 + • • • + {On-l - 6n.l)Mn.l) 

i = l  

n-1 n-1 

• Z X Cijicos dij - COS 
i - 1 j ~ t+/ 

71-7 . 
- X ^in COS \di + J^(dlMi + • • • + 

+ X Cj^cosj^j + • • • + On-iMji-i^ (3.5c) 

The derivation of the time derivative of V(6,in) is shown in Appendix A, 

Section A.2.1 and is shown to be 

i = l dOi ddJi 
= -nj'^M"in (3.6) 

where M" is defined by matrix equation (A.9) 

It is also shown in Appendix A, Section A.2.2 that 

V= - 07"^M" {n<0 VnJ^iO (3.7) 

The inequality (3.7) along with the fact that for an open region around 
(6^,0), V(9,{n) > 0 for (6,{n) ^ (0^,0) implies that V" qualifies as a Lyapunov 

function. 
Also from the inequality (3.7) it is evident that every trajectory of the 

swing system must either go to infinity or converge to one of the equilibrium 

points, which implies there are no limit cycles or chaotic motion. 
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Theorem 3.1.4 

Assume that int(A(6^,0)) =A(6^,0) where int denotes interior of a set 

and the bar denotes closure of a set. With this assumption, 
Assumption 3.1.2, Properties 3.1.1 and 3.1.3, the stability boundary of 
the swing system can be characterized as 

dA(9',0) = \^ . W'(e\0) (3.8) 
(e\0)eEB 

The proof can be found in Chiang et. al. [21] and Zaborsky et. al. [35], 

however the energy function in property 3.1.3 must be substituted for 
the proofs given in [21 and 35]. It has also been shown in [20 and 35] 

that the stability boundary can be expressed as 

dA(e',0) = . W'(e\0) 
(e\0) e EB-1 

where EB-1 is the set of all equilibrium points on the stability boundary 
which are of type-i. A type-i equilibrium point is such that the 

Jacobian evaluated at that point has only one eigenvalue with a positive 
real part. In fact, it has been shown Zaborsky et. al. [35] that 

U . [w'(d\0) - i n t [w'(d\0)%\J , W '(&,0) 
(e\0) 6 EB-k (B',0) e EB-(k+l) 

Where EB-k denotes the set of all equilibrium points on the stability 
boundary that are of type-A. It is assumed that there is a (6^,0) e EB-k 

and a (di,0) e EB-(k+l) such that (d\0) e dW^(6^,0) . The right-hand 

side of the above equation may be empty. 

The assumption that int(A(6^,0)) =A(9^,0) is given by Zaborsky et. al. 

[36] and is shown to be needed if the proofs given in [20 and 21] are to be 

valid. This assumption implies that there are no unstable equilibrium 

points interior to A(d^,0). • 
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Theorem 3.1.5 
The stability region, A(6^,0), for the swing system is imboimded. This 

is due to the fact that there are no equilibrium points of the swing 

system which are sources. 

The proof is given in [20]. • 

3.1  ̂An Approximation to the Relevant Stability Boundary 

When a disturbance occurs in a power system the state of the system 
will start to move from the initial equilibrium position. When the 

disturbance is cleared the state of the system is the initial state or initial 
condition for the post-disturbance system. If the disturbance is sustained the 
state may leave the stability region for the post-disturbance system. In doing 

so the state will intersect with the stability boundary and because of equation 
(3.8) will intersect a stable manifold. The intersection point is referred to as 

an exit point and will be described in Chapter 4. This gives rise to the 
definition of the controlling UEP as used in this dissertation work. 

Definition 3.1.6 

Define the controlling UEP as the UEP which anchors the stable 
manifold intersected by the disturbed system state. 

The stability of the post-disturbance system is preserved if the 
disturbance is cleared before the disturbed state intersects the stability 

boundary. Therefore, stability can be assessed if the intersection point can be 

determined. This is, however, one of the proposed tools stated in Section 1.2 

that did not work because the intersection point is difficult to detect. There is 
a way out of this difficulty in that an approximation to this stable manifold by 

a constant energy surface can be made. The constant energy surface is 
associated with the energy of the UEP that corresponds to the stable manifold 
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that is intersected. Hence, this constant energy surface only approximates 

the part of the stability boundary that is relevant to the disturbance specified. 
The following two theorems will illustrate the effectiveness of the above 

idea, but first the following definitions must be given 

(6^^,0) the pre-disturbance system SEP. 

Vc(9^,tn^) {  (d,GJ) : V(9,nj) < V(6^,in^) and connected and 
containing (6^,0)}. 

dV(9^,UJ^) {(9,tn) : V(9,0J) = V(9^,W^) and connected to (9^,W^)}. 

^(9,W,t) X J xR —>R("--^^ xR('^-i), the solution of the disturbed 

system with initial condition (9,tn) and (lf^(9,US,0) = (9,UJ). 

Theorem 3.1.7 
Let (9^',0) e EB. 

i) The connected constant energy surface dV(9^,0) intersects the stable 

manifold, W®C0",Oj e dA(9^,0) only at the point (9"-,0). The set 

Vc(9"-,0) does not contain any point which belongs to the stable 
manifold W^(9"',0). 

ii) Suppose (9^,{n^) e with (9^,(n^) ?i(9"',0). The set Vc(9^,in^) 

does contain points which belong to the stable manifold W^(9^,0). 

The proof is given in [21] • 

Theorem 3.1.8 
Let (9^^,0) be the initial condition for the disturbed trajectory. Let this 
disturbed trajectory intersect the stable manifold W^(9^,0) c dA(9^,0) at 
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the point ^(6"',0) at the time ig- In other words (6^,in^) = 
(^(d^^,0,t2)- Assume that (e A(d^,0) n Vc(0^,0). 

The disturbed trajectory must pass through the constant energy 
surface dV(6^,0) before it intersects the stable manifold W^(d^,0). 

Proof: 
From the assumption, V(6^^,0) < V(6^,0). At the intersection point 
V(6^,UP) > ¥(&"•,0). The energy function (3.5a) is continuous along the 

disturbed system and hence, continuous with respect to t. The 
application of the Intermediate-Value Theorem guarantees there is a 
tj, 0 <ti < t2, such that V(^(^^,0,ti)) = V(&^,0). • 

From Theorems 3.1.7 and 3.1.8, dV(6"-,0) seems to approximate 

W®rB^,0) and the approximation is conservative in nature. The second part of 

Theorem 3.1.7 simply states that if any other constant energy surface that 
intersects with the stable manifold is taken to approximate the stability 

boundary then this approximation may be poor. If the energy surface has an 
energy larger than that at the UEP then holes may appear in this 

approximate stability boundary. Also if some other energy surface that has 

energy smaller than that at the UEP is taken as an approximation then the 
stability assessment may be too conservative. 

3.1.3 A Mathematical Definition for the Energy Margin 

The concept of the energy margin for the transient stability assessment 
was given in Section 2.4. This margin is based on the mathematically 

founded idea presented in Theorem 3.1.8. Similarly the energy margin 
defined in this section is 

AV=V(G^,0) •V(epl,upl) 
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where is the initial condition put on the post-disturbance system. If 

AV > 0 the system is stable and if AV < 0 the system will be considered 

unstable. 

Figure 3.1 depicts part of the stability boundary for the post-disturbance 
system. In particular, note the controlling UEP (6"^,0), the corresponding 
stable manifold W^(6^,0)', the constant energy surface dV(6"^,0) and the 
disturbed trajectory The disturbed trajectory intersects the stable 

manifold at the point A (i.e., an exit point). Note, this figure is shown in two 
dimensions and some parts are exaggerated to illustrate the point intended. 

In Figure 3.1 the initial condition that is placed on the post-disturbance 
system must lie on the disturbed trajectory. For example three different 
initial conditions are denoted by the points 1, 2 and 3. By using the previously 

defined energy margin, the stability of the post-disturbance system can be 
assessed. The system is stable with point 1 as the initial condition. With 

point 2 as the initial condition the system is unstable in terms of the energy 

margin but in reality the system is stable. This points out the 
conservativeness of this procedure. With point 3 as the initial condition the 
system is unstable. 

As noted earlier the point of intersection of the faulted trajectory and 
the stable manifold W®r6^,0) is nearly impossible to detect. However, this part 

of the stability boundary can be approximated by the constant energy surface. 
This constant energy surface is defined by the energy at the UEP which 

anchors the stable manifold that was intersected. So the problem then lies 
with finding (6"^,0). One suggested way of doing this is to make use of the 

associated gradient system. 

3  ̂The Associated Gradient System 

The associated gradient of the potential energy system is given by 

è = .  W p E  =  ' - ^ ^  ( 3 . 9 )  
dd 



www.manaraa.com

42 

post-disturbance SEP 

pre-disturbance SEP 

Figure 3.1 Illustration of the approximate stability boundary 

where Vpe is given by equation (3.5b). Equation (3.9) can also be written as 

0. = -JÏPE i = l,..., n-1 (3.10) 
dOi 

From matrix equation (A.7), z, can be written as 

z = g 

• Zj 
•'& • 

•
•

•
 

' gi ' 

(3.10) 

M n-1 

1 - Zn-1 . L Mn 1 -Sn - l  .  

Then the gradient system can be written in vector-matrix notation as 
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è = .  W p E  =  ' - ^ ^  =  z  =  M ^ g  (3.11) 

Define the following terminology for the gradient system. 

<t)gs(6,t) xR the solution of the gradient system with 
initial condition (6) and (l)gs(Ô,0) = (6). 

A(6^) the stability region of the gradient system. 

dA(O^) the stability bovindary of the gradient system. 

H the set of aU equilibrium points for the gradient system. 

HB the set which is the intersection of the set H and the stability 
boundary of the gradient system, (i.e., HB = dA(6^) n H ). 

The following will lead to the characterization of the stability boundary 
of the gradient system along with an important property on the gradient 
system. 

Theorem 3.2.1 
Let 0® be an isolated minimum of VPE, then 6^ is an asymptotically 

stable equilibrium point of the gradient system. 

The proof is given in [32, pg. 200] and is based on the fact that Vpe can 

be taken as a Lyapunov function and it is immediately seen that 

VpE = • d = - \o for 60 H 
dd \ dd 

Hence VPE decreases along trajectories of the gradient system. 
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Theorem 3.2.2 
Let be an «-limit point or an m-limit point of a trajectory of the 

gradient system. Then y is an equilibrium point of the gradient 
system. This implies that a trajectory of the gradient system must 
either run off to infinity or else tend to an equilibrium point. 

The proof is given in [32, pg. 203]. • 

Property 3.2.3 
The Jacobian of the gradient system is of the form 

Jgs -
ddi 

- dVpE 

dOi . ddj ddi dOj 
-, n-1 

Assume that this Jacobian is nonsingular at the equilibrium points of 
the gradient system. This Jacobian is symmetric since 

d^VpE _ c^VpE 

d6i ddj ddj ddi 

Since there are no zero eigenvalues all are hyperbolic. The right 
eigenvectors of the Jacobian also form an orthogonal basis [32]. 

Assumption 3.2.4 
Let 0', di e HB. The intersection of W^(d^) and W'^idi) satisfy the 

transversality condition for all &•, 0 s HB. Here i may equal j 

Theorem 3.2.5 

The stability of the gradient system can also be formulated in a manner 

similar to that of the swing system as shown in Section 3.1.1. Assume 
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that int(A(d^)) =A(6^). With this assumption, Theorems 3.2.1, 3.2.2, 

Properties 3.2.3 and Assumption 3.2.4 the stabiUty boundary of the 
gradient system can be described as 

dA(e') = {J . W'(e') 
(9') e HB 

The proof is given in [21]. 

It has also been shown [20 and 35] that the stability boundary can be 
expressed as 

dA(e') = KJ . W'(e') 
(e') £ HB-i 

where HB-1 is the set of all equilibrium points on the stability boundary 

which are of type-i. Also the theory given in [35] can be applied to the 
gradient system so that 

Vj . = . wee") 
O') e HB-k (Q') e HB-(k+l) 

Where HB-k denotes the set of all equilibrium points on the stability 
boundary that are of type-^. It is assumed that there is a (60 e HB-k 

and a(0) e HB-(k+l) such that e dW^(O^) . The right-hand side of 

the above equation may be empty. • 

Theorem 3.2.6 

At regular points of the gradient system the vector field is 
perpendicular to the level surfaces of VPE- Which can also be stated as, 
at regular points, the trajectories of the gradient system <t)gs(6,t) cross 
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level surfaces of VPE orthogonally. Regular points of the gradient 
system are points such that z ^0. 

The proof is given in [32, pg. 201]. • 

Assumption 3.2.7 

Consider the unloaded gradient system which is defined as the 
gradient system with Pi = 0, i = 1, ..., n-1. Assume that the stability 

region of the unloaded gradient system is bounded. 

3.3 The Ck>iinectioii Between the Swing System and 
the Associated Gradient System 

This section contains a description of the connection between the swing 
system and the gradient system. 

Theorem 3.3.1 
9 is an equilibrium point of the gradient system if and only if (9,0) is an 

equilibrium point of the swing system. 

Proof: 
Assume that 9 is an equilibrium point of the gradient system, then z = 

0. It was shown in Proposition A.2.1 in Appendix A that the matrix M® 
is positive definite which implies that it is nonsingular. Since 2 = 0 this 
implies that g = 0 and in turn (9,0) is an equilibrium point of the swing 

system. Assume that (9,0) is an equilibrium point of the swing system. 

Since g = 0 it is seen immediately that 2 = 0. • 
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Proposition 3.3.2 
The assumption in Property 3.2.3 that the Jacobian matrix Jgs is 
nonsingular at equilibrium points of the gradient system is equivalent 
to the assumption in Property 3.1.1 that the matrix dg 196 is 

nonsingular at the equilibrium points of swing system. 

Proof: 

It is seen from Theorem 3.3.1 that an equilibrium point of the gradient 
system corresponds to an equilibrium point of the swing system. If the 
matrix dglBQ is nonsingular at an equilibrium point of the swing 

system then it is nonsingular at an equilibrium point of the gradient 
system. From equation (3.11) the Jacobian matrix Jgs can be written as 

J = 
BQ de 

It was shown in Appendix A, Proposition A. 1.1 that M® is positive 
definite which implies that det(M^) ^ 0 and since dg I dd is nonsingular 

det(dg 139) 0. From the well known property of determinants det(M^ 

dg! dd) 5^ 0; hence, since dg! dd is nonsingular so is Jgs. • 

Theorem 3.3.3 

A type-A equilibrium point is one in which there are k number of 
eigenvalues with positive real parts. 6 is a type-^ equilibrium point of 

the gradient system if and only if (6,0) is a type-A equilibrium point of 

the swing system. An immediate result of this is that 0® is the SEP of 

the gradient system if and only iî (6^,0) is the SEP of the swing system. 

Proof: 
The proof is given in Appendix A, Section A.3. 
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Assumption 3.3.4 

Assume that there are a finite number of equilibrium points on the 
stability boundaries of both the swing system and the associated 

gradient system. 

Theorem 3.3.5 
6 is an equilibrium point on the stability boundary of the gradient 

system if and only if (0,0) is an equilibrium point on the stability 

boundary of the swing system. 

Proof: 

With Assumption 3.3.2, the proof is given in Theorem 6-3 in [21]. The 
proof will follow if the variable z in this work is substituted for the 

variable /"in Theorem 6-3 in [21]. • 

The connection between the gradient system and the swing system is 
contained in Theorem 3.3.5 which again states that an equilibrium point on 
the stability boundary of the gradient system corresponds to an equilibrium 

point on the stability boundary of the swing system. 
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4. THE EXIT POINT METHOD 

The exit point method (also known as the BCU method [22]) is a 

numerical procedure used to determine a starting point relatively close to the 
controlling UEP. This method is based on the connection between the swing 

system and the gradient system which were presented in Chapter 3, Section 
3.3. The contents of this chapter is a discussion of the exit point method. The 
following is a brief description of each section in this chapter. 

Section 4.1: The exit point is defined and a fundamental assumption 
of the exit point method is given. 

Section 4.2: A Taylor series expansion of the function VpE (3.5.c) is 

shown in order that a description of the equipotential 
energy surfaces can be made. 

Section 4.3: Examples of the equipotential energy surfaces derived 
from the Taylor series expansion and of an unloaded 3-
machine system are given. 

Section 4.4: A 3-dimensional illustration of the energy well of the 

function YPE for the unloaded 3-machine system is given. 

Section 4.5: A discussion of how the exit point is detected is given. 

Section 4.6: The numerical algorithm of the exit point method is 
given. 

Section 4.7: An interpretation of the exit point method is given in the 

form of two scenarios. 
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Section 4.8: Three problems associated with the exit point method are 
discussed. 

Section 4.9: The results of the application of the exit point method to 

the unloaded 3-machine system are presented. 

Section 4.10: The issue of the equality in dA(d^,0) n {(6,(n) : (U = 0} = 
dA(6^) is addressed. 

Section 4.11: A summary of Chapter 4 is presented. 

4.1 The Fundamental Assumption of the Exit Point Method 

The exit point is a term defined to be the point that is the intersection of 

the stability boundary of a dynamical system and a trajectory that starts 
within the stability region and then leaves it. It is assumed that this 

trajectory will not intersect the stability region again. The notation that is 
used here and through out this chapter can be found in Chapter 3, Sections 
3.1, 3.1.2 and 3.2. Let (6^^,0) e A(6^,0) and let the disturbed trajectory 
intersect dA(6^,0) at the point In other words, = (j/^(6^^,0,t) 

n dA(6^,0) and is the exit point with respect to the swing system. Since the 

disturbed trajectory intersects the stability boundary it must then intersect a 

stable manifold as stated in Theorem 3.1.4 and by the mathematical 
definition of the controlling UEP, Definition 3.1.6, cj^ssj g W^(6'^,0). 

Accordingly, the exit point with respect to the gradient system is denoted by 
Define Ang(6,in) = 6. The disturbed trajectory is in the 2(n-l)-

dimensional C7-0-space. The trajectory is the projection of the 
disturbed trajectory into the (n-1) dimensional 0-space. The exit point 6®-?® is 
defined to be 0®^® = Ang((1)^(6^^,0,t)) n dA(6^) and since dA(6^) is composed of 

stable manifolds, then 0®^® e W^(60, where 0' e HB. It is not known at this 
time, that ('0®®®,C5®®®J e W®f0",Ct) implies that 0®^® e However, there is 

numerical evidence that suggests this may be true for a considerable number 

of cases. In fact, there is an example given in Section 4.9 where this is shown 
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to be true. Since there is a lack of an analytical foundation, the following 
fundamental assumption will be made. 

Assumption 4.1 
e implies that e 

Figure 4.1 is an illustration of the idea put forth by Assumption 4.1. In 

this figure the disturbed trajectory intersects the partially shown stable 
manifold WH6^,0) at the exit point (0®®®, GT^®®^. The point B denotes the flow on 

the manifold that goes toward (9^,0). The dashed line, which is the projection 
in 0-space of the disturbed trajectory, intersects the partially shown stable 

manifold at the exit point 0®^®. It is seen in Figure 4.1 that the exit 
point is detected before the exit point 6%® is. The reason it is 

illustrated this way is because through the numerous cases where the exit 
point method was applied to a realistic power system this order usually 

appeared. The viewer must be cautious when looking at Figure 4.1. This 
figure is not the result of any analysis of a specific system; it is to illustrate 

the idea of Assumption 4.1 and is not to be taken literally. For example, in 
this figure the 0-space is two-dimensional and it seems that the 07-space is 

one-dimensional which cannot be. 
The exit point (0®®®, CF®®J is difficult to detect, however the situation of 

detecting the point 0®^® is different. If, for example, a point on W®f0"j may be 

found then W^(6^) can be utilized to determine 0" and this is why the gradient 

system is used. The computational scheme suggested by Chiang et. al. [21] 
does not in general detect the exact exit point 0®^® but does detect a point that 

is relatively close to the point 0®^®. The shape of the equipotential energy 

contours of the function VpE that are connected to the stable manifold W®(0t) 

is the key behind this computational scheme. The next section contains a 
discussion which expands on the shape these equipotential energy contours. 
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Figure 4.1 Illustration of Assumption 4.1 

A point of interest that is shown in Figure 4.1 is that dA(d^,0) n {(6, W) : 

05 = 0} ?^dA(d^). Since (6"'.0) e dA(6^,0), Theorem 3.3.6 of Section 3.3 implies 

(6^) e dA(d^) and this is shown in Figure 4.1. There are however, points 6 e 

dA(6^) such that (6,0) ë dA(6^,0) and this is also shown in Figure 4.1. An 

example based on a specific system will be given in Section 4.10 that indicates 
that dA(e^,0) n {(d,(n) :m=0} 7idA(e^). 

4.2 Taylor Series Expansion of the Function VpE 

A Taylor series expansion of the function VPE around 0" is one way of 

determining the shape of the equipotential energy contours in a neighborhood 
of 6". The extent of the truncation of the series might indicate how far from 
0" that the remaining shape is valid. The Taylor series expansion [37] of VPE 

around 6" will take the form 



www.manaraa.com

53 

VpE(e) = Vpsfe"; + X • ^t) 
i = 1 dOi 

^ i = 1 j= 1 d6i d9j 

^Çi 1 I (4.1, 
^ i = l j = l k = l ddiddj dOk 

where s e (0, 1). The last term in equation (4.1) is the third order remainder 

term denoted by 

w; = IS S S 
^ i = 1 j= 1 k= 1 oQi dOj ddk 

Assuming that RsiQ) is relatively small near 6", it may be ignored. From 

equation (3.12) the first order term can be eliminated. From equation (3.10) 
-dVpEI dd = z = 0 at an equilibrium point, hence 

i = 1 301 i = 1 

The truncated series can be written as 

VPEO) = VPE(E'') + f s X ^ ^ (di • St) (9j - ef) (4.2) 
= dOidej 

This equation (4.2) can be expressed in vector - matrix notation as 

VpeO) = ypEce"; +1 (ao) ̂ me") (Ad) (4.3) 
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where H(&^) is the Hessian of VPE and A9=(Q- 6"-). From Property 3.2.3 it is 
seen that H(6"') is a nonsingular symmetric matrix. There exist an 
orthonormal matrix Q (i.e., Q-^ = such that H(6"') Q = E [38]. The 

matrix jE is a diagonal matrix of the eigenvalues of H(and it can be 
immediately seen that this equation implies H(6"^) = Q E Q'^. In fact, the 
columns of the matrix Q are the right eigenvectors of Equation (4.3) 

becomes 

VPE(6) = VPEO"') + ^(AO)^QEQ'^ (AO) (4.4) 

Let 40 = Q Î? so that û = Q-^ AO = AO and 0 = Q û+ 0"^. Equation (4.4) 

becomes 

VPE(Q z) + = VPECO"^) + ̂  E î5 (4.5) 

Notice that the Hessian matrix of VPE is equivalent to the negative of 
the Jacobian of the gradient system equations (i.e., Jgs = -H ), The 

eigenvalues of Jgs are hyperbolic and then so are the eigenvalues of H, which 

are the elements of E. It must also be noted that the matrix Q is now the basis 
for the new variables û and this basis is based at the UEP, 0". If Ui is the 

right eigenvector of H then ui is the new coordinate axis for 
Let the eigenvalues of Jgs evaluated at the UEP be A/, Ag, ..., Xk, 

..., -Xn-i with Xi> 0. The first k eigenvalues of Jgs are positive while the last (n-

1-k) eigenvalues are negative. The elements of the diagonal matrix E are 
then -XJ, -As,..., -XK, XK+I,..., XN-I. Equation (4.5) can then be expanded into 

VPE(Q Û+ O"') = VPEFO") + ̂ (- XI XKÛFI + A/E+I ÛFI+I + • • • + XN-L ÛN-L) 

The energy at any point on the stable manifold W®f0"-) has equal or 

higher energy that O£VPE(0^)- The equipotential energy contours in question 
will have the form { û : VPE(Q Û + 0"-) - VPE(0"-) = e, e > 0 }. Close to the 
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controlling UEP these equipotential energy contours will take the form in the 
Q basis as 

e = J r - A; ^k'&k + h+l àk+l + ••• + Xn-l ûn-l) (4.6) 

Equation (4.6) takes the form of a higher dimensional hyperboloid. 

4  ̂Equipotential Energy Contours of the Function VpE 

Two examples are given in this section to illustrate the shape of the 
equipotential energy contours of VPE around 6". The first is an example to 

show the hyperbolic contours which are a result of the Taylor series 
expansion of VpE- The second example illustrates the actual equipotential 
contours of a 3-machine system. 

4.3.1 Two-dimensional Example of the Hyperbolic Contours of 
the Function VPE 

As an example to illustrate the hyperbolic contours, let VpE be a 
function of two variables Bt and %. Let +Ajf and -Ag be the eigenvalues of Jgs 

and let uj and U2 be the corresponding eigenvectors. The eigenvalues of H( 

are then -A; and fAg. Figure 4.2 is an illustration of the equation 

e  =  ̂ (  - X i  û f  +  X 2  û i )  

for e > 0, e < 0 and e = 0. Three different contours levels for e>0, one for e < 0 

and one for e = 0 are shown. These contour levels look more like parabaloids 

than hyperboloids, but these levels are supposed to represent hyperboloids. 

The eigenvectors uj and «2 are shown and note the symmetry of the contours 

around these eigenvectors. The stable and unstable manifolds of the gradient 
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ui e= 0 e=0 

e<0 

e>0 

e>0 

e<0 

e= 0 e = 0 

Figure 4.2 Hyperbolic equipotential energy curves 

system are shown and note that the corresponding eigenvectors are tangent 
to these. 

4.3.2 Energy Contours of the Function VPE for the Unloaded 
3-machine System 

In this section four figures which illustrate the equipotential contours 
of the function VPE for the unloaded 3-machine system will be given. The 

data for the 3-machine system as well as an one-line diagram is given in 

Appendix B, Sections B.l and B.2. This system contains transfer 
conductances. In order to illustrate the equipotential contours of VPE (3.5C) 

for this system the transfer conductances need to be ehminated and hence the 
name unloaded 3-machine system. The unloaded 3-machine system is a 
modified version of the 3-machine system and is given in Appendix B, Section 

B.3. 
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The purpose of showing these figures is to show: i) the stability 

boundary of the associated gradient system, ii) the equilibrium points on this 
stability boundary and iii) the shape of the equipotential energy levels near an 

UEP and around the stable manifold. 
The potential energy function VPE given by equation (3.5c) is shown by 

equation (4.7) with explicit numerical values for Cij and Mi from Appendix B, 

Section B.3. It must first be noted that firom the internal generator angles 
given in Table B.9, & = 0 and hence, the SEP, 0® = 0. The values of Pi are also 

zero. 

VpE = - Ci2 {cos {G] - 62) - 1) - Ci3 cos 19; + -^-{OiMi + d2M^ 

- C23 cos ̂ 2 + + ^23 

Substituting Cij and Mi for explicit values 

VpE = -1.1712 cos 912 • 1-4096 cos 8; + 0.0340 %|) 

-1.7384 cos id2 + i (0.OI6O di + 0.0340 62)) + 4.3192 
* iy» ' 

Simplifying, the above equation becomes 

VpE = -1.1712 cos (Oi - 62) -1.4096 cos (l.l276 Oj + 0.2711 

-1.7384 cos (0.1276 6; + 1.2711 %) + 4.3192 (4.7) 

The associated gradient system is defined in Chapter 3, Section 3.2 and is 

èi = zi = = -1.1712 sin (di - 62) -1.5895 sin (l.l276 0; + 0.2711 
ddj 

- .2218 sin (0.1276 61 + 1.2711 %) (4.8a) 
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e2 = Z2= = 1.1712 sin (ei - 62) • 0.3821 sin (l.l276 di + 0.2711 %) 
962 

- 2.2097 sin [o.1276 61 + 1.2711 (4.8b) 

Figure 4.3 is a contour plot of the equipotential curves of VPE (4.7). The 
range of the axes is from -350° to 550° for 61 and from -300° to 300° for 62. 

There are many features of Figure 4.3 and are noted in the following 
paragraphs. 

Theorem 3.2.6 states that the trajectories of the gradient system cross 

equipotential surfaces orthogonally. Therefore, the flow or phase-plane 
portrait can immediately be observed from Figure 4.3. 
The SEP of this unloaded gradient system is 0® = (0.0°, 0.0°) and this 

correlates to the low point of energy denoted by L. The stability region is 
shaped as a bowl since by moving away from 0® the energy of the 

equipotential surfaces increase. Figure 4.4 is similar to Figure 4.3 except 

that the stability boundary of the gradient system has been drawn in. There 
are twelve unstable equilibrium points on the stability boundary. Six of these 

are high points of energy each denoted by H. These high points are actually 
unstable equilibrium points of the gradient system and are sources (i.e., all 

eigenvalues of Jgs evaluated at this equilibrium point have a positive real 
part) in which the flow always moves away from this type of equilibrium 

point. The other six equilibrium points are saddle points (i.e., at least one 
eigenvalue has a positive real part and at least one eigenvalue has a negative 

real part when Jgs is evaluated at this point). These saddles are denoted by 
the black dots in Figure 4.4. Table 4.1 contains a list of the twelve 

equilibrium points on the stability boundary. 

The stability boundary that is drawn into Figure 4.4 is composed of the 
stable manifolds of the twelve equilibrium points on the stability boundary. 
Note that these stable manifolds were not numerically calculated. As noted, 

if the equipotential contours are known the flow can be observed immediately, 
hence, the stable manifolds were drawn in such that the equipotential 

surfaces were perpendicular to the flow. The saddle points are type-i and 
have an one-dimensional stable manifold that can be distinguished in Figure 
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Figure 4.3 Equipotential contours oîVp^ 
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Figure 4.4 Equipotential contours of with stability boundary 
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Table 4.1 Equilibrium points on the stability boundary of the gradient 
system 

Equilibrium points (Oi. 60) 

Sources Saddles 
(139.92 ° -122.68°) (163.58° -16.42 °) 

(187.23 89.83 °) (128.69° 128.69°) 
(70.14° 167.55°) (-34.89°, 145.11°) 

(-139.92 °, 122.68°) (-163.58 ° 16.42 °) 

(-187.23 ° -89.83 °) (-128.69° -128.69°) 

(-70.14 ° -167.55°) (34.89 ° -145.11 °) 

4.4 by the arrows denoting the flow direction. The source points are type-2 

and have a zero-dimensional stable manifold and this stable manifold is just 

the source point itself. 
These twelve unstable equilibrium points are also unstable equilibrium 

points on the stability boundary of the four-dimensional swing system as 
stated in Theorem 3.3.5. Let an equilibrium of the swing system have the 
form (di, U5i = 0, 92, % = 0), then for example, (163.58°, 0, 16.42°, 0) is an 

unstable equilibrium points swing system. As noted in Theorem 3.3.3 the 
type-i unstable equilibrium points of the gradient system (i.e., saddle points) 
are type-i unstable equilibrium points of the swing system (i.e., saddle 

points). Type-2 unstable equilibrium points of the gradient system (i.e., 
source points) are type-2 unstable equilibrium points of the swing system 

(i.e., saddle points). 
Figure 4.5 contains an illustration of a detailed contour plot of the 

equipotential surfaces around the saddle point (163.58°, -16.42°) and the stable 

manifold of this saddle point. These equipotential surfaces are similar to the 
ones shown in Figure 4.2. It seems obvious that the equipotential surfaces 

look hyperbolic in shape even when they are not relatively close to the saddle 
point. In other words, the equipotential surfaces whose energy is not 
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Figure 4.5 Close-up of the equipotential contours of Vpg 
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relatively close to the energy of the saddle point still keep there hyperbolic 
shape around the stable manifold. 

All of the points denoted by L in Figure 4.1 are low points. The low 
points are stable equilibrium points of the gradient system and each low 

point has a region of attraction. However only one of these low points is the 
stable equilibrium point that is of interest. Similarly, all points denoted by H 

in Figure 4.1 are source points. 

Also, symmetry can be seen in Figure 4.3 and in the unstable 
equilibrium points given in Table 4.1. This symmetry is due to the fact that 
the cosine terms in the function VPE are periodic with period 2n. Reference 

[39] contains a further investigation into this symmetry. 

4.4 Eneî  Well of the function VPE for the 3-machine System 

Figure 4.6 contains a better perspective of the depth of the equipotential 
surfaces of the function VpE that cannot be fully illustrated by Figures 4.3 and 

4.4. This shows that the equipotential surfaces of the function VPE do indeed 
form an energy well. The ridge around the top of the energy bowl can be seen 
as stability boundary and the dips in this ridge are the saddle points. Note 

that units on both axis are in radians. 

4.5 Detecting the Exit Point of the Gradient System 

The purpose of the discussion in the last two sections was to illustrate 

the shape of the equipotential surfaces around the stable manifold of a saddle 
point. It may be concluded that not only do the equipotential surfaces around 
the stable manifold close to saddle point have a hyperbolic like shape but that 

they retain this type of shape when they are not relatively close to the saddle 
point. 

Under Assumption 4.1 the projection into 0-space of the disturbed 

trajectory intersects the stable manifold W^(at the exit point 0®^®. This 

situation is depicted in Figure 4.7. 
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angle 1 

Figure 4.6 Energy well of the function VPE 

Figure 4.7 is an illustration of four typical hyperbolic like energy 

curves around the stable manifold of the controlling UEP which is assumed 
to be a saddle point. These equipotential curves have values of 0 < C/ < Cg < C3 
< C4. The exit point 0"^^® is rarely numerically detectable but a close 

approximation to this point can be made. This approximation results in the 
point The point Q^ssa is numerically detected by evaluating 
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Figure 4.7 Approximating the exit point of the gradient system 

= (4.9) 
at dd 

along the disturbed trajectory. The vector z is the negative gradient of 

the function VPE as defined in Chapter 3, Section 3.2 and (U = 9. The reason 

that equation (4.9) is satisfied in Figure 4.7 can explained in two ways. 
Before Ang(^(6^^,0,t)) gets to the point the values of Vfg along 

this trajectory are less than C3, at Vpe = C3 and after this VpE < Cg. 

Hence, VPE goes through a maximum at the point 

The second method of visualizing equation (4.9) is shown in Figure 4.8. 
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Ang((l>70'',atV 

Figure 4.8 Detecting the approximate exit point of the gradient system 

Since the vector z is the negative gradient of VpE it is perpendicular to 

the equipotential surface at the point at which it is based. The vector 07= 6 is 

tangent to the projection into 8-space of the disturbed trajectory. At the point 
it is seen that the vectors z and GJ are perpendicular to each other which 

is exactly what is stated by equation (4.8). Note that the only way the exit point 
is detected is ifAng(<j)^(0^^,0,t)) intersects perpendicularly and this 

makes detecting this point virtually numerically impossible. In both Figures 
4.7 and 4.8 the point d^ssa was outside the stability region of the gradient 

system. In general, this point can be either in the stability region or outside 
of the region. Note that there can be other points along Ang((l/^(6^^,0,t)) where 
dVpEldt = 0. For example if Ang((1)^(6^^,0,t)) passes near and by 0®, a point 

where dVpE/dt = 0 may be encountered and this may be a minimum point. 
Since is a point where Vpe goes through a maximum, dVpEldt will go 

from being positive to being negative. However, it is assumed that the point 
Qegsa will be encountered somewhere relatively close to the stability boundary 

of the gradient system. 
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4.6 Numerical A%oiithm of the Exit Point Method 

The numerical algorithm of the exit point method is a computational 
scheme that determines a point relatively close to the controlling UEP. The 

numerical algorithm of the exit point method is given below in two steps and 
this algorithm is denoted algorithm-EP. For some dynamical system with 
solution (p, define to be the numerical approximation to 0. 

algorithm-EP 

i) Detect the point d^ssa along the numerical trajectory 
N(Ang((jf^(d^^,0,t))). It was assumed in Section 4.1 that (6^^,0) e 

A(6^,0). Let 6^" be the UEP on the stability boundary of the 

gradient system with lowest energy. Assume that 0®^ e Vc( 

where the definition ofVc(6^"') follows from a similar definition 

given in Section 3.1.2. 

ii) Define 

t=1 

[j/(t) is then the 1-norm of z along N((pgs(6^ssa^t2)). .Let 6"^sp = 

N((pgs(6^ssci^t2)) where (g > 0 is the first time such that \i/(t2) 
reaches a local minimum. The point &^sp is referred to as the 

minimum gradient point. 

Find the minimum gradient point Qf^sp. 

After these two steps are completed the controlling UEP 6^ is simply 

solved for by solving the nonlinear algebraic equations z = 0 with d"^sp as the 

initial guess. 
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When the controlling UEP is determined, transient stability can be 
assessed as described in Section 3.1.3. 

4.7 Interpretation of the Steps in the Exit Point Algorithm 

The reasoning behind algorithm-EP can be explained through the 

following two scenarios. These scenarios follow the same three step format 
in which algorithm-EP is explained. 

Scenario 1: 

i) The exit point of the gradient system e WH6^) is detected. 

ii) Assume that the numerical integration technique has infinite 
precision and thus exactly traces the trajectory <pgs(6^ss^t). Since e 

-> 6^ a&t -> o°. However, along (pgs(&^^^,t), y/(t) may 

or may not go through a local minimum, but it can see that y/ft) 0 
as t -> <x>\ If T is taken large enough, the point (j)gs(6^ss^T) should be 

relatively near 0". If the point <l)gs(9^^^,T) is taken as the initial guess, 
the nonlinear algebraic solver should converge to 0" which is the 

desired result. Note that any numerical integration has finite 

precision and if the initial condition were on the stable manifold the 

numerical trajectory would soon depart fi'om this manifold due to 
numerical error. 

iii) The controlling UEP 0" is solved for using Q^s^^T) as an initial 

starting guess. 

Scenario 2: 

i) The approximate exit point is detected and this point is assumed 

to be relatively close to the stable manifold for the following 

reasons. It can be observed that if the equipotential contours have a 
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sufficient curvature near W^(6'^) and if the projection into 0-space of 

the disturbed trajectory intersects the stable manifold in a near 
perpendicular fashion the point 0®^®® will most likely be relatively 

close to W®Ce"J. Note that this point may or may not be in the stability 

region of the gradient system. 

ii) It is assumed that there is a finite precision in the numerical 
approximation. It seems reasonable that if d^ssa is relatively close to 

W^(d"'),N((pgs(Q^ssa,t)) should stay relatively close to W^(6"') for a 

certain period of time and near the end of this time period 
N(<pgs(6^ssa,t)) should be relatively close to 0". After the end of this 

period N(<pgs(6^ssa^t)) will tend to flow away firom and 0". As 
N(^gs(d^ssa^t)) approaches closer to 0", yf(t) should get smaller since 

this quantity is based on the vector field z. At the UEP z = 0, therefore, 

close to the UEP the 1-norm of z must be relatively small. As 
N(^gs(6^ssa^t)) passes by 0", \{/(t) should begin to get larger. Therefore, 
y/ft) will go through a local minimum when N((f)gs(6^ssa^t)) is relatively 

close to 0". 

iii) The initial guess point d'^sp will be relatively close to 0" so that the 

nonlinear algebraic solver will produce 0". 

Figure 4.9 is an illustration of the three steps of the numerical 

algorithm of the exit point method. The system that is used is the unloaded 3-
machine system that was first utilized in Section 4.3.2. The controlling UEP 
0" has the coordinates (-34.89°, 145.11°) which are in the form (62,62). It is 

assumed that W^(d"-) is intersected by Ang(^'^(6^^,0,t)) and that the 

approximate exit point 0®^®" has been found and is relatively close to W®^0"J as 

shown in the Figure 4.9. There is no actual disturbed trajectory simulated. 
The point 0^^®® is just placed in the relative vicinity of W®(6"-) and notice that 

this point is in the stability region of the gradient system. The point 0®^®" has 
the coordinates (-87.00°, 131.17°). The numerical trajectory is 

shown in this figure and was actually simulated by the integration of 
equations (4.8). Note that this trajectory does indeed stay relatively close to 
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Figure 4.9 Illustration of the minimum gradient point 
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W^Cô"^) for some time. The minimmn gradient point was found as indicated 
and is located at (-46.40°, 141.13°). Note that this point is relatively close to 6^. 

At the point before d^sp on the numerical trajectory, the 1-norm of z is i z; I + 
Izg l  = 0 .2112 ,  a t  d^sp ,  \ z i  \  +  Izg  I =  and  a t  the  po in t  a f te r  Izy  I +  
Izg l  = 0.2147, which shows that a minimum of y/dtj was found at 9ngp. 

Figure 4.10 is similar to Figure 4.9 except that the approximate exit 
point is not in the stability region of the gradient system. The 
coordinates for the point are (-87.00°, 131.19°). The minimum gradient 

point was determined to be at the coordinates (-56.46°, 140.86°) and is in a 

similar position with respect to as the O'^sp in Figure 4.9. The numerical 
trajectory converges to the point (-69.78°, 290.22°) which can be seen in Figure 

4.3. 

4.8 Issues of the Exit Point Method 

Section 4.7 contained an interpretation of the ideas behind the exit point 

method. These ideas where heuristic and no formal analytical justification 
exist which states that through the application of this method the controlling 
UEP will be determined. Since this method does not have a strict analytical 

foundation, problems with the method may arise. In fact, problems have 
been observed in certain systems when the exit point algorithm was applied. 
This section contains a list of the problems observed and a discussion of each. 

Problem 1 

One problem may be that no minimum of ii/(t) is encountered along 
^gs(S^^^°',t) which implies that there is no minimum gradient point. This idea 
is illustrated in Figure 4.11. It is assumed that is intersected by 
Ang(^(9^^,0,t)). The approximate exit point is located at (-87.00°, 128.00°). 

The numerical trajectory N(^gs(d^ssa^t)) is also shown. M.oxig N(^gs(Q^ssa^t)) 

there is no minimum of Izy I + Izg I. In this particular situation a reason 
that there is no minimum of I z; I + Izg I might be that the numerical 
trajectory does not approach 6" and this is due to the fact that is not 
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Figure 4.10 Illustration of the minimum gradient point outside of 
the stability region 
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Figure 4.11 No minimum gradient point found 
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relatively close to WH6"')- Therefore, it may be plausible to conclude that the 
closer is to the better the chances are that N((pgs(d^ssaj;)) will pass 

near 0" and a resultant minimum gradient point will be encountered. 

The existence of the minimum gradient point may also depend on the 
fact that the true solution is approximated by a numerical 
trajectory N((j)gs(d^s^",t)). Assume that there is no local minimum of \if(t) 

along the true trajectory Since there is a difference between 

aioANfcpgsO^ssa^t)), even though this difference may be relatively 
small, there may be a local minimum of y/(t) along N((j)gs(d^ssa^i))^ The same 

can be claimed for the reverse situation. There may be a local minimum of 
y/(t) along the trajectory of the true solution but along the numerical 
trajectory there may be no local minimum of y/ft) encountered. 

In the case where there is not a local minimum of encountered 

along the numerical trajectory, a change in the step size may or may not 
result in an encountered minimum gradient point. If a minimum gradient 
point is encountered with the change in the step size this does not imply that 

the true solution encounters a minimum gradient point. 
There are no hard-and-fast rules that can be applied to the above 

situations. One guideline may be to try to keep the numerical approximation 
as close to the true solution as possible while keeping in mind that too much 

accuracy in the numerical solution might be too costly in terms of 

computation. 
If it happens that no minimum of \i/(t) is encountered along the numerical 

trajectory, then by Theorem 3.2.2, the trajectory will converge to an 
equilibrium point or go off to infinity. If the trajectory converges to an 

equilibrium point, this point will be a low point (i.e., a stable equilibrium 
point). In this case there needs to be a check put into the numerical 

algorithm so that this situation may be detected. The application of the 
nonlinear algebraic solver will result in a stable equilibrium point and the 
exit point method will fail. Note that the stable equilibrium point which the 

numerical trajectory is converging to may or may not be the stable 
equilibrium point of the gradient system but is always a low point. 
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Problem 2 

If a local minimum of \i/(t) is encountered along the numerical 
trajectory then this point 6^sp is used as an initial guess when the nonlinear 

algebraic equations are solved. It may happen that the equilibrium point 

determined by the application of the nonlinear algebraic solver is not the 
controlling UEP 6". The point O^SP is then not in the domain of convergence 
of 0" for the particular nonlinear algebraic solving algorithm. 

It seems reasonable to assume that if 0" is not produced by the 

application of the nonlinear algebraic solver then what is produced is another 
unstable equilibrium point on the stability boundary of the gradient system or 

a low point. 
Assume that a low point is produced. An assessment of transient 

stability is finiitless since the energy at a low point is zero. 
Assume that another unstable equilibrium point on the stability boundary is 
produced. This situation is shown in Figure 4.12. It is assumed W^(6"') is 
intersected hy Ang((lj^(6^^,0,t)) and that 0®^®" e Ang(^(Q^^,0,t)). The point 0®^®® 
is located at (-120.00°, 123.41 °). The resultant minimum gradient point Q^sp 

is located at (-102.47°, 125.05°). When a nonlinear algebraic solving algorithm 

is applied with d^sp as the initial guess point, the source point, which is 
denoted by the symbol H and is located at (-139.92 °, 122.68°), is produced. The 

application of the exit point algorithm was supposed to produce 0" located at 
(-34.89°, 145.11°). One reason 0" is not produced may be that the point 

was located relatively close to the source point and the minimum gradient 
point which was encountered was not that relatively far from O^esa, This 
implies that &^sp may be relatively close to the source point. The nonlinear 

algebraic solver algorithm that was used in this case was FindRoot from 

Mathematica [40]. 
The source point (-139.92°, 122.68°) has a higher energy value than that 

of the point 0" and because of this the assessment of transient stability 

through the evaluation of the energy margin may not be conservative. Since 
it was assumed that W®r0") was intersected hy Ang(^'^(6^^,0,t)) then by 

Assumption 4.1, W^(Q"^,0) is intersected by (j)'^(d^^,0,t). It was shown in 
Theorem 3.1.8 that the trajectory ^(6^^,0,1) must pass through the constant 
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Figure 4.12 Incorrect unstable equilibrium point found 
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energy surface defined by the energy value at (6'^,0) before it intersected 

W^(6"',0). However, if the relevant stability boundary is approximated by the 

constant energy surface, which is defined by the source point, there may be a 
clearing point (QP^,UP^) that is not in the stability region of the swing system 

but when assessment is made system is deemed stable. 

Assume that through the application of the exit point method a UEP is 
found which is not the controlling UEP and not a low point. It seems likely 
that this UEP will have a higher energy value than the controlling UEP 0". 

The reason this might be the case is motivated through Figure 4.12. Take any 
e 0* ^ ffB, then (l>gs(&',t) —> Qy e HB ast—> -«>. This follows directly 

from Theorem 3.2.7. Therefore, this can be interpreted as the stable manifold 
6"-) "starting at" one or more unstable equilibrium points on the stability 

boundary of the gradient system and "ending at" 6^. In Figure 4.12 the stable 
manifold W^(d'^) "starts at" the two source points (-139.92°, 122.68°) and 

(70.14° 167.55°) and "ends at" 0". Both of these unstable equilibrium points 

have a higher energy than the energy at 0". Therefore, if 0®^®® is close to 
W^(and one of the higher energy UEPs, Q^sp may also be near one of these 

higher energy UEPs. 
Suppose that d^sp is encountered. If 6^sp is not encountered near one 

of the higher energy UEPs or 0" then it must be relatively far inside the 

stability region A(0V or in one of the regions of attraction of another low point. 

The reason for this is that (l>gs(9^s^'^,t) will flow into one of these regions. 

Therefore, it is most likely in this situation that a low point will be produced 
by the application of the nonlinear algebraic solver. 

Problem 3 

The reason Assumption 4.1 was put forth is because there is no 
analytical justification that e W^(6"^,0) implies that 6^ss e W^(6^). 

The reason there is no justification is that the exit points are produced by the 

disturbed trajectory and this trajectory usually cannot be related to the post-
disturbance system. It may be the case that (0^®®, CF®®j e W®(Q^fi) and 0^^® e 

W®r&) where 0" &. In situations like these the method could produce UEPs 

whose energy values may be higher or lower than the energy at 0". It has 
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been shown in Theorems 3.1.7 and 3.1.8 that the transient stability 
assessment through the energy margin calculation which is based on the 
controlling UEP 0" will be a conservative one. However, with the energy 

margin calculation based on other UEPs the assessment may be too 
conservative or even over estimated. 

4.9 Application of the Exit Point Method to the Unloaded 3-inachine System 

In the previous sections of this chapter the associated gradient system 
of the unloaded 3-machine power system model was analyzed. In this section 
the results of the application of the exit point method to the unloaded 3-

machine swing system are given. Also, transient stability results are shown. 
For this application the post-disturbance system is taken to be equal to the 

pre-disturbance system and this system is given in Appendix B, Section B.2. 
The differential equations of the swing system given by equation (3.1) are. 

nJi = (- Ci2 sin {dj - 62) - Ci3 sin - Dj iDi) I Mj 

d j  =  GJj  

UJ2 = (- C21 sin [02 - di) - C23 sin ̂ 62 + - D2 % j / M2 

62 = CJ2 

The values of Mi and Cy are given in Section B.2 of Appendix B. The damping 
is uniform with Dj = 2 Mj and Dg = 2 M2. 

The disturbed system is taken as 

= ( 0.0464 - 0.3 Cj2 sin [dt - 62) 
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-0.1 Cjs sin ^6i + ̂  {OjMi + 62^2)^ - Dj Wi ) / Mj 

9j = fiJ; 

% = r 0.4726 - 0.3 C21 sin (% - 0;) - D2 (S2) I Mg 

% = % 

The disturbed system is similar to the post-disturbance system except for two 
changes. A small term similar to an increase in mechanical power is added 

to the right hand side of % and Also, the parameters Cy are scaled 
which is similar to changes in the power system network configuration. 
However, it is not claimed that this disturbed system can be realized. 

The three steps of the numerical algorithm of the exit point method are 
illustrated in Figure 4.13. The following observations can be made. 

• The projection into 0-space of the numerically calculated disturbed 
trajectory N(Ang(^(6^^,0,t))) is shown. This trajectory starts at ^ = 
0®^ = (0.0°, 0.0°). It is easily seen that this trajectory intersects the 

stable manifold where the coordinates for 0" are (128.69°, 
128.69°). 

• As noted earlier, the exit point of the gradient system will probably 
not be detected, but a point that is relatively close to the stable 
manifold Wf6^) will. In this example this point is the approximate 

exit point = (102.33°, 146.11 °) and is shown in the figure. This 

point does indeed seem to be relatively close to the stable manifold 
WHO""). 

• The numerical trajectory of the gradient system N((j)gs(6^ssa,t)) is 
shown. The minimum gradient point is found and O'^sp = (105.27°, 

140.66°). When the nonlinear algebraic solver routine FindRoot is 
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Figure 4.13 Disturbed trajectory, exit point and minimum gradient point 
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applied the point 0" is produced. Considering Assumption 4.1 the 
UEP 0" = (128.69°, 128.69°) will be taken as the controlling UEP, 

which is the desired result, and the transient stability assessment 
through the evaluation of the energy margin will be based on the 
energy value at 6^. 

Figure 4.14 shows there is numerical support for Assumption 4.1. The 

following can be observed in Figure 4.14 and it must be noted that the swing 
system is in a four-dimensional space in this example while the figure only 
shows two dimensions. N(Ang(^(Q^^,0,t))) is shown and this trajectory starts 
at 0® = 05^ = (0.0°, 0.0°) and ends at the point (Qp^,UP^) which happens to lie just 

inside the stability region of the swing system. This point is taken as the 

critical clearing state on the disturbed trajectory and corresponds to a critical 
clearing time of (c/ = 0.8244 seconds. The critical clearing time was 
determined through time simulation. The point 0°' is shown in the figure. 

In order to show that Assumption 4.1 holds in this particular case a similar 
technique as described in scenario 2 of Section 4.7 will be used. Since r0=',CF^j 

is just inside the stability region, it is relatively close to the stability boundary 

and hence, relatively close to a stable manifold in the stability boundary. 
Since (6P^,Œ°^) is close to a stable manifold of the swing system, the swing 

system trajectory and hence the numerical trajectory 

should approach relatively close to the UEP which anchors this stable 

manifold. 
The projection into 0-space of the numerical approximation to the 

solution of the swing system N(Ang(^(9^^,UP^,t))) is shown in Figure 4.14. 
This trajectory starts at 0=' and seems to go very near to the UEP 6"-, goes by 

0", then turns and goes toward the UEP again and finally heads toward 0'. 

The numerical trajectory is in four-dimensional space and does 
not go directly through (0",O) because at that point. Figure 4.15 is plot of 

all four states variables of N((j)(d^^,nF^,t)) versus time. The time axis starts at 
= 0.8244 seconds. When t -1.2 seconds, dj = 62 = 125° which are close to the 

coordinates of 0" which are (128.69°, 128.69°). This time of ( = 1.2 seconds 

corresponds to the first time N(Ang(^(Qp^,np'',t))) passes by 0". Again, When t 

= 1.75 seconds, dj ~ 62 ~ 128° and this corresponds to the second time 
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Figure 4.14 Numerical support of Assumption 4.1 
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N(Ang((p(&^^,nP^,t))) passes by 0". At these two times the speeds UJj and 
QTg are relatively small which indicates that <p(6p'',Upl,t) travels relatively close 

to The result of this is that the stable manifold that is intersected by 

0,t) is indeed WHB^'yO) and Assumption 4.1 does hold in this case. 

The part of the stability boundary that is relevant to the disturbed trajectory is 
W^(Q"',0) and can now be approximated by the constant energy surface 
dV(E^,0) = { (6,M : v(9,cn) = V(e^,0) = VPE(E^) = VPE(128.69° 128.69°) = 6.296}. 

This constant energy surface is precisely what the energy margin, which 

was defined in Chapter 3, Section 3.1.3, is based on. . Figure 4.16 is a plot of 
VPE, VKE> V = VPE + VKE and VPECO"-) all evaluated along the disturbed 

trajectory. The graph of V = VpE + VKE intersects the constant graph of 
VPE(D^) at the time of 0.8018 seconds. This time of 0.8018 seconds would then 

be the critical clearing time as evaluated through the application of the 
energy margin. The percent error is ( 0.8244 • 0.8108 ) 10.8244 = 2.75% and is 
relatively small thus displaying the credibility of using dV(6'^,0) to 

approximate W^(9'^,0). 

4.10 Addressing the Issue of the Equality in dA(6^,0) n{(Q,OJ) : (n= 0} = dA( W 

This section is presented as a side note to address the issue of whether 
or not dA(6^,0) n {(6,CD) : nj = 0} = dA(Ô^). This was also addressed in [21] 

where it was stated that the equality in the above equation is uncertain. 

The differential equations in matrix form for the swing system and the 
associated gradient system are repeated here for convenience. 

The swing system which is defined in Section 3.1 is 

m = M ' ^  g -  M ' ^  D  O  

6 = CO 

The associated gradient system is defined in Section 3,2 and is 
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Figure 4.16 Energy quantities along the disturbed trajectory 
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G = M ^ g  

From an observation of these two dynamical systems there does not 
seem to be any immediate reason why dA(6^,0) n {(9, GJ) : C7 = 0/ = dA(d^) is 

true. 
The numerical example below shows that dA(6^,0) n {(6,05) : 55 = 0} ^ 

dA(6^). The stability boundary of the associated gradient system of the 

unloaded 3-machine system is shown in Figure 4.4. Figure 4.17 is an 
illustration of part of W^(6"^) c dA(6^) and part of dA(6^,0) n [(9,13) : 07 = 0} 
around the UEP 0" = (-34.89°, 145.11°). The part oî'W^(6^) that is shown is 

determined by integrating the gradient system backwards in time with the 
initial condition relatively close to 0". The part of dA(9^,0) n {(9,05) -. 03 = 0} that 

is shown is determined as follows. The differential equations of the swing 
system are integrated forward in time with the initial condition of the form 
(9,0). The initial condition is selected as follows. For this particular example 

select a point (9j ,92) that is near and inside A(9^) and create a 

sequence of points 92, 92, ••• with > 62 and - 02 relatively small. 

Take the point (9i , 63,0, 0) as the initial condition and solve the swing 
system. If the trajectory converges to 0® then keep 9i the same and use the 

next element in the sequence for % and repeat with this new initial condition. 

If the trajectory did not converge to 0® for the initial condition 

(9 i  ,  92 ,  0 ,  Qj . t ake  (9 i  , (92^  +  92)12)  as  the  po in t  on  dA(9^ ,0 )  n  {(9 ,03 )  :  03  =  0 ) .  

Increment 9i to a suitable value and repeat the process over again. With 
enough points determined to be relatively close to dA(they can be 

connected together as shown in the figure. 

4.11 Summary 

Sections 4.1 through 4.4 contained a prelude to the description of the 

exit point method. Section 4.1 contained the fundamental assumption of the 

exit point method which was numerically supported when the unrealistic, 
unloaded 3-machine system was analyzed in Section 4.9. Sections 4.2, 4.3 and 
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Figure 4.17 Stability boundaries of the two systems 
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4.4 contained a discussion on the description of the equipotential surfaces as 
well as the potential energy well. It was noted that the shape of these 
equipotential surfaces play a crucial role in the detection of the exit point. 

Section 4.5 contained a discussion of how the approximate exit point is 
detected. Section 4.6 contained the description of the three step numerical 

algorithm of the exit point method. Section 4.7 contained the reasoning why 
this method may work for determining the controlling UEP. It was shown 
that there is an analytical foundation for this method as presented in 

scenario 1. However, in the numerical setting the idea underlying 

foundation is not valid and this leads into the problems of the exit point 
method as presented in Section 4.8. Problem 1 illustrated that there may be 
no minimum gradient point. The idea in Problem 2 was that if there was a 
minimum gradient point found the resulting equilibrium point may not be 

the intended unstable equilibrium point (i.e., the controlling UEP). The idea 

of Problem 3 was that there is no analytical proof that the implication stated 
in Assumption 4.1 is true and this is precisely why it is assumed. 

Section 4.9 contained the results of the application of the exit point 
method to the unloaded 3-machine system. In this case the exit point method 
worked correctly in the sense that it indeed determined the controlling UEP. 

The concept of the constant energy surface, defined by the controlling UEP, 

approximating the relevant stability boundary was substantiated. 

Section 4.10 contained an example whose result addresses the issue of 

the extended connection of the stability boundaries of the swing and gradient 
systems. 

The case that was analyzed in Section 4.9 seemed to be a "good" case 
since Problem 1, Problem 2 and Problem 3 were avoided. However, these 

problems can occur and it seems likely that as the dimension of the problem 
becomes larger there may be more probability that problems such as the ones 
mentioned will occur. 

Chapter 5 contains a description of a new numerical method that when 
applied will prevent conditions described in Problem 1 and Problem 2 from 

happening. This method is referred to as shadowing the stable manifold. 
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5. SHADOWING A STABLE MANIFOLD OF THE GRADIENT SYSTEM 

The contents of this chapter is a presentation of a new numerical 
method known as shadowing the stable manifold and the foundations of this 
new method are based on the exit point method. The underlying idea of the 
exit point method is to utilize W^(d'^) in order to determine the controlling 
UEP 6" as defined in Definition 3.1.6. In step (i) of this numerical method a 
point Q^ssa. is found and it is hoped that this point is relatively close to WHQ^)-

Then in step (ii), when the trajectory <t)gs(6^ssa^t) ig numerically approximated 

each of the resulting approximated points N((f)gs(0^ssa^ti)) will be relatively 
close to the stable manifold W^(d"-) up to a certain time tk- The minimum 

gradient point is hoped to be close to 6" so that the resulting equilibrium point 
from the application of the nonlinear solver is 0". 

As discussed in Section 4.8 there are three problems associated with 
the exit point method. Problem 3 is concerned with the validity of 

Assumption 4.1. Problems 1 and 2 are a direct result of the failure of step (i) 
and step (ii) of the numerical method. The issue in Problem 1 is that no 

minimum gradient point is found and this situation may happen regardless 
of where 0®^®" is located with respect to W®r0"J. The issue of Problem 2 is that 

an incorrect equilibrium point is produced. This problem can generally be 
attributed to the location of with respect to 0" and other unstable 

equilibrium points on the stability boundary of the gradient system. 

The shadowing method algorithm is substituted for the existing exit 
point method algorithm. Upon the application of the shadowing method a 

finite sequence of points /^0'"Vt=o is produced with the point 0^^ being 
relatively close to the point Q^ëso- and an initial condition for the algorithm. 

An advantage of the shadowing method over the exit point method is that 
under certain conditions there is a guarantee that 6^^ is relatively close to 
0". With the point 6"^^ relatively close to 0" it would be likely that 0" would 

result from the application of the nonlinear algebraic solver with 0^^ as the 
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initial guess. Therefore, Problem 1 and Problem 2 associated with the exit 
point method are eliminated. 

The term shadowing comes from Definition 6.6.3 in [41]. A sequence 

is said to A-shadow the sequence if d(xi, yO <A Vi. Where d (xi, 

yi) is some suitable distance function. 

This definition cannot be directly applied to the method described here 

since the sequence {6 ^}i=:0 is finite. So, in this situation the definition can be 

indirectly applied if a finite sequence {6^^}Ho can be found with 0^' e W^(d'^) 

along with some A> 0 so that 0^9 < AV i e [0, ..., N]. In other words, 

the sequence /^0'"Vt=o A-shadows a sequence from 

The following is a description of the four sections in this chapter. 

Section 5.1 This section contains a description of the shadowing 

method in the form of a numerical algorithm. 

Section 5.2 This section contains the results of the application of the 
shadowing method to two examples. These are the same 

two examples which the exit point method failed when 
applied to in Section 4.8. 

Section 5.3 This section contains an analytical foundation for this 

shadowing method when applied to the unloaded gradient 
system model (i.e., Pi = 0,i = 1,..., n-1). 

Section 5.4 This final section contains a conclusion to the chapter 

along with three important remarks concerning this 
shadowing method. 

Most of the notation used in this chapter was defined in Chapter 3, 

Sections 3.1, 3.1.2 and 3.2. When convenient a small description will be added 
to clarify the notation. 
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5.1 A Descriptioii of the Shadowing Method Algorithm 

Before giving a description of the shadowing method algorithm a fact 
about the periodicity of the function VPE (3.5c) needs to be given. 

Take any e and define the set Sray(0^) = { 0: 6 = (&" - 6^) a + 6^, a 

>0 } which represents an affine ray (i.e., a ray which does not necessarily 

pass through the origin) which passes through the point 6^ and starts at the 
SEP 6®. The function VPE (3.5c) for the unloaded gradient system takes the 

following form on the ray. This derivation is similar to the derivation of 
dg((&'i - a+ 6^) I da as shown in Appendix A, Section A.3. 

VpEae' - 0'; a + 0®; = - E E cos (A>- « + ef - 0/) 
i = 1 j = i+1 

• Cin COS {Ai a+ di+ m») + (5.1) 

where Qij, Ai and are defined in Appendix A, Section A.3 and these three 
terms are fixed when given fixed 0® and 0^. The constant term is defined 

by evaluating the part of VpE which is only a function of 0®. It can be seen 

that the function VPE (5.1) is only a function of a along the ray. This function 

VpE takes the form of an almost periodic function as defined in [42, Chapter 
12], This function VPE seems as if it were periodic but this is not the case in 
general. If the terms Qij, and Ai, which resemble frequency terms, are 

incommensurable, that is, the frequency terms Qij, and Ai do not have a 

common frequency, the function VPE (5.1) is not periodic, but almost periodic. 

Note that a periodic function is an almost periodic function. From the 
definition of an almost periodic function the following is stated. Given any % 
> 0 and a* > 0 there exist a scalar i(x) > 0 which depends on % such that in 

any interval I cR+ of length i(x) there is a a ** e / such that 

I VpEae' - d") a* + d") - VpE((d'' - e') (a** + a) + d') I <X 
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The numerical algorithm of the shadowing method consists of a basic 
three step cycle. Each time a cycle is executed a point 0'™' of the sequence is 

produced. Hence, in order to produce the finite sequence 1^6 the cycle 
needs to be executed N times. The value of what N should be is discussed 

later in this section. 
Figure 5.1 is similar to Figure 4.7 except that two cycles (i.e., six steps) 

of the shadowing method are shown. The application of these two cycles 
produces the points 6^^ and 6^^ as shown. The six steps that are shown in 

the figure need to be described and these six steps will be referred to as s-1 

through s-6. 

s-2 

erl s-1 
s-3 

QmO 

w'ie") 

projection of the disturbed 
trajectory into 0-space 

Figure 5.1 Illustration of the shadowing method 
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The point 6^^ is determined in a similar manner to the detection of the 
approximate exit point d^ssa^ Along the projection of the disturbed trajectory 
the point 0"^® is detected where -z(6"^^) • (6"^^ - 6^) = 0. This detection is 

explained in step s-3 below. 

s-1 Let 6^^ = with ti relatively small. (pgsCd'^-Ojj) ig the solution 

for the gradient system as defined in Chapter 3, Section 3.2. 

s-2 Create an affine ray that starts at 0® and passes through the point 6^^. 

This  r ay  wou ld  cons i s t  o f  t he  se t  S r i  =  {  0 :  6= (6^^  -  6^ )  a  +  6^ ,  a>0} .  

s-3 This step consists of finding a local maximum of VpE on the ray in the 
vicinity of 6^^. This point will be denoted as 6"^^ e S^i. This point 6"^^ 

satisfies the following equation. 

dYm=.^^EM.M = .z(d"'^).(e''^.e^) = o (6.2) 
da dd "CK 

As shown earlier in this section, VPE is an almost periodic function of 
a along the ray, so, the problem of determining the point 0'"^ can be 

formulated in terms of determining the value of a such that dVpE((&'^ -

6^) a + 6^) Ida = 0. It will not be shown here, but because of the fact that 

VpE (5.1) is almost periodic there are an infinite number of local 
maximums and local minimums of VPE along the ray. 

Newton's Method may be applied and the iterative scheme is 

dVpE((e''^-e')aj+6')/da . 
9+; = 9 : j = 1,2,.. • 

d^VpEde''^ - 0 ; aj + e')ldo? 

Since z  = M^g,  as shown in Chapter 3, Section 3,2, this can be written 
as 
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[- M® dgae'^ - e') aj + e')/da\. re - e') 

The derivation dg((6^^ - 6^) a + 6^) I da is given in Appendix A, Section 
A.3, The starting point for the iterative scheme is aj = 1 which 
corresponds to 0'"^ on the ray. The Newton Method may be iterated 
until for some au, k > 1, \[- g(($''^ - 9^) cck + 9^)] • (9''^ - 9^) 1 is 

relatively small which can be written as 

| [ -  -  9 ' )  U k  + 0®;] • (9'^-9') \ < T ]  

For example, the value of 77 may be picked as 

77 = c|[- M^gO'^)] • (9'^-9') 

Where c > 0 is a relatively small number. The point 9^^ is then 9^^ = 

(9^^ - 9^) ak+ 9^). It seems likely that by keeping ti relatively small at = 

1 will be a good starting guess for the Newton Method. 

s-4 Repeat step s-1 with 9^^ replacing 9^^ and let 9'"^ = 9^^,t2) with ^2 

relatively small. 

s-5 Repeat step s-2 with 0^2 replacing 9"^. 

s-6 Repeat step s-3 and find 9"^^ e Sr2 by the previously defined Newton 
scheme, where Sr2 -{ 9: 9= - 9^) a + 9^, a >0 }. In this scheme the 

value 2 would now replace the value 1 (e.g. 9"^ =;> 0^^) 

In Figure 5.1 the points 0^®, 0^^ and 0^^ are relatively close to W^(9"'). 
The point 9^^ is closer to 0" than 9'^^; also, 0"»^ jg closer to 0" than 0'»^. It 

seems likely that if a few more cycles of the shadowing method are performed 
9"^^ will be relatively close to 0". 
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Steps s-1 through s-3 are one cycle and steps s-4 through s-6 are 
another cycle. Therefore, the shadowing method can be described by a 
generic cycle of three steps, sc-1 through sc-3. The following describes the 
s t a r t  o f  t h e  c y c l e ,  i  e  [ 1 , N ] ,  

sc-1 Let 0" = (l)gs(with ti relatively small. 

sc-2 Form an affine ray such that this ray consists of the set Sri = ( 6 •. 6 = 
a+  9» ,  a>0} .  

sc-3 Determine the point 0'"' e Sri by applying the previously mentioned 

Newton scheme. In this scheme the value of i would now replace the 
value 1 (e.g. Gr^ => 0^0. 

Step sc-1 is similar to a predictor type of step. Starting at some point 
Qm(i-i) the flow of the gradient system goes away from and thus a 

relatively small ti is required to keep 0^' in the vicinity of W®('0"j. 

Step sc-3 is similar to a corrector type of step. The situation of detecting 
the point 0^' is similar to the situation of detecting the approximate exit point 
Qegsa The shape of the equipotential surfaces around W®ris the key to 

detecting the respective points in both situations. As shown in Figure 5.1 the 
equipotential surfaces have a hyperboloid like shape around 0"j and this 

is a necessity for step sc-3 to work as intended. In higher dimensions (i.e., 
(n-1) > 2) the shape will be that of a higher dimensional hyperboloid. 

The application of the shadowing method will produce the finite 

sequence f0'"Vt=o- The value of N will not be determined before the shadowing 
method is applied. What will determine the value of iV is a criterion that will 
be checked during the shadowing process. This criterion is similar to the one 

that is checked when the minimum gradient point is to be found. The 
criterion for determining the value of N is as follows. At the end of the 
cycle the following sequence of points will have been produced, 0^^^ 

If, for a relatively small P>0,  the following inequality holds, let N = i .  
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X \ z j ( e ' ^h \<p  
j= i  

In other words, let iV = i when the 1-norm of z, evaluated at 8^', is smaller 

than p. If the approximate exit point is close to an unstable equilibrium point 
which is not 0" the 1-norm of z may be relatively small when evaluated at or 
near this approximate exit point. Therefore, a value for p may be for example 

j=i 

where c > 0 is a relatively small number. 
Again, the idea behind this criterion is that 2 = (? at 0" and along any 

path starting in a neighborhood of 6" and going toward 0" the 1-norm of z will 

eventually get smaller. 

52 Examples of the Shadowing Method 

In Section 4.8 there were two examples given in which the application 
of the exit point method failed. In this section the results from the 
application of the shadowing method to these two examples are given. The 
detection of the point 6"^^ was explained in Section 5.1, however, in order to 

compare the results from the application of these two methods the point 6'^^ 
will be taken as 

Example 1 

In section 4.8 there was an example of the application of the exit point 

method to the unloaded 3-machine system in which there was no minimum 
gradient point found. This example is illustrated in Figure 4.11 with 0®^®» = (• 

87.00°, 128.00°). In this case the exit point method failed. Figure 5.2 
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30.0° 

•8.0° 

•46.0° 

•84.0° 

Qegaa 

•122.0° 

•160.0° 

180.0 100.0 140.0 60.0 •20.0 20.0 
angle 2 

Figure 5.2 Illustration of shadowing the stable manifold for example 1 
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illustrates the numerical application of the shadowing method to this 

particular case. Figure 5.3 is similar to Figure 5,2 but the part of the figure 
where the points produced from the shadowing is enlarged. The numerical 
trajectory N((j)gs(d^(^'^\ti)) is shown as well as the part of the ray from to 0^' 
for all i e [1, ..., N]. The following is a list of parameters used in this case. 
The time U = 0.1 seconds for all i e [1, NJ. The parameter T] = 0.05 and the 

parameter {3= 0.1. With these parameters the application of the shadowing 

method will produce a sequence of 29 points The first point 0'"® = 
S^gsa was input to the shadowing method and the last 28 points where actually 

produced through the method. Hence, N = 28. Note that the values for the 
parameters such as ti and p are chosen on heuristic basis. 

The shadowing method does work in this case where as step (ii) of the 
exit point method failed. It seems from Figure 5.3 that the sequence seems to 

shadow the stable manifold and that the sequence seems to be converging to 
the controlling UEP 0". The location of the controlling UEP in this case is 0" 
= (-34.89°, 145.11 °) and the point = (-39.27°, 143.96°) and from the location 

Qm28 is indeed relatively close to 0". Application of a nonlinear algebraic 

solver did indeed produce the equilibrium point 0". 

Example 2 

There was also another example given in Section 4.8 where a 

minimum gradient point was detected but the application of the nonlinear 
algebraic solver produced an equilibrium point which was not 0". The 

shadowing method was applied to the situation and Figure 5.4 illustrates the 
results. The parameters used in this case are the same as those used in 

example 1 of this section. The value of N in this example is 36. The location 
of is (-120.00°, 123.41 °). The point ^^6 ig located at (-39.56°, 143.86°) and 

0" at (-34.89°, 145.11 °) and these two points are relatively close to each other. 

Where the application of the existing exit point method fails to produce 6"^ in 

this example the application of the shadowing method which is substituted 
for step (ii) produces 0". 
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-30.0 

-44.0 
QmN 

-58.0 

-72.0 

-86.0 

-100.0 
80.0° 94.0° 108.0° 122.0° 136.0° 150.0° 

angle 2 

Figure 5.3 Close up of the shadowing method for example 1 
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•30.0° 

•50.0° 

-70.0° 

-110.0° 

Qegaa 

-130.0° 
150.0 110.0 130.0 90.0 50.0 70.0 

angle 2 

Figure 5.4 Illustration of the shadowing method for example 2 



www.manaraa.com

100 

5.3 Analytical Foundation for the Shadowing Method 

The contents of Section 5.1 was a presentation of the three step cycle of 
the shadowing method. The application of the method produced a finite 

sequence with the last point in the sequence relatively close in distance to the 
controlling UEP Two examples were presented in the previous section. 

These examples did provide visual proof that the shadowing method did 

indeed work as intended. However, these are only two examples and the 

dimension associated is relatively small. Therefore, a mathematical 

analysis of this method is needed and this is the theme of this section. 

The contents of this section is a presentation of an analytical 
foundation for the shadowing method when applied to the unloaded gradient 
system model from Section 3.2, equation (3.11). The main result of this 
section is that given the point 0'"®, and under certain assumptions and 

conditions, an infinite sequence can be found such that by using these 

ti's in the solution of the gradient system the resulting infinite sequence 

{d"^^}i=o converges to 6^. 

The following is an analogy to the outline of the scheme used to show 

that the infinite sequence converges to 0". Suppose there is an open 

interval on the real line A = (a, b) and a Amotion F such that the inf(F(A)) = a. 

inf refers to the infimum of a set. Suppose there exist an algorithm such that 
given an initial condition e (a, b) the application of this algorithm produces 

a sequence of points (cHjlo ^ such that < F(c^). Also, suppose 

that the sequence {c^}^o does not converge to any point c e (a, b) then it must 

converge to the point a. 

The outline of the above analogy is basically what will be employed to 

give analytical foundation to the shadowing method. The interval A is 
substituted for a (n-l)-l dimensional manifold The function F is 

substituted for by the fimction VPE- The time sequence {tjjJlj is found such 
that through the solution of the gradient system < VPE(&^^)- The 

point a represents the controlling UEP 6" and this controlling UEP is such 
that VpE(e^) = inf(VpE(MGW)), 
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Two points need to be made concerning the stability region/stability 

boundary of the unloaded gradient system. The first is given in Proposition 

5.1 which follows from Assumption 3.2.7 of Section 3.2 from Chapter 4. The 

second is an assumption that needs to be made and is done so in Assumption 

5.2. 

Proposition 5.1 
As noted in Section 3.2, 0® is the SEP of the gradient system (3.11) and 
dA(0®) is the corresponding stability boundary. Take any &" e and 
denote the set SrayCd^) as Sray(&') = { d: 9= (Qr - e^) a + a >0} which 

is an affine ray emanating from 6^ . Then there exist a a* > 0 such that 
((&'' - 6^) a* + e dA(d^). In other words, the ray formed by 6'' 

intersects the stability boundary of the unloaded gradient system. As 

noted earlier, the unloaded gradient system is the gradient system 
with Pi = 0, i = 1,..., n-l. 

Proof: 
It was assumed in Assumption 3.2.7 that the stability region A(G^) of 

the unloaded gradient system is bounded. Since the stability region is 
open there exist a a® > 0 such that Sray(d'') e A(d^) for 0 < a < a®. 

Suppose that there does not exist a a* > 0 such that ((6^ - 6^) a* + 6^) e 

dA(6^). Then SrayCO'') e A(6^) for a > 0. This implies that A(6^) is 

unbounded which is a contradiction. Hence, the ray formed by 6^ does 

indeed intersect the stability boundary of the unloaded gradient system. 

Assumption 5.2 
The intersection of the ray Sray(6^) as explained in Proposition 5.1 and 

the stability boundary dA(6^) consists of a singleton set (i.e., a set 

containing only one element). 
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The Assumption 3.2.7 and Assumption 5.1 are confirmed by observing 
Figure 4.4 where the stability region and stability boundary of the unloaded 

gradient system based on the unloaded 3-machine system are shown. 
Let 6" be the controlling UEP. The deSnition of the controlling UEP as 

used in this dissertation work was given in Definition 3.1.6 of Section 3.1.2 
fi-om Chapter 3. The definition will be repeated here. The controlling UEP 0" 

is the equilibrium point which anchors the stable manifold that is intersected 
by the disturbed trajectory. This stable manifold is part of the stability 
boundary of the swing system. In other words, n W^(6'^,0) = 0 for 

some t > 0 .  
The equilibrium type of UEP 0" is relevant with respect to the 

shadowing method. It will be assumed in Assumption 5.3 that the 
controlling UEP 0" is type-i. This assumption itself has foundation which is 

explained as follows. 
Denote B°(e,6,0) the open ball with radius e> 0 and centered 

at the point (0,0). It was assumed in Theorem 3.1.8 of Section 3.1.2 from 
Chapter 3 that the pre-disturbance system SEP 0®^ is relatively close to the 

post-disturbance SEP 0®. Let e be such that (6^^,0) e B°(e,9,0). It seems 
reasonable to argue that for any (0^,0) e B°(e,0,0), 0^,0,n dA(6^,0) 0 for 
some t > 0. Denote S* c dA(6^,0) to be the set such that ^(B°(e,d,0),t) nS* 0 

for t>0. Suppose that there are points (&',0) e B°(e,d,0) such that 6t,0,t) n 

W^(6^,0J 0for some t > 0 where 6^ e dACd^,0) is type-A, 1 < k < (n-l)-l. Note 
that W^(d^,0) czdA(6^,0). It was shown in example 3.3.17.2 of [43] that the 

stable manifold W^(6'^,0), which is of dimension (n-l)-k, has a Lebesque 
measure of zero in the (n-l)-l dimensional dA(6^,0). The Lebesque measure 

c a n  b e  t h o u g h t  o f  a s  a  m e a s u r e  o f  v o l u m e .  I n  o t h e r  w o r d s ,  t h e  ( n - l ) - k  
dimensional stable manifold W^(d^,0) does not take up any volume in the (n-

1)-1 dimensional dA(d^,0). The trajectory (1)^(6,0,t) can be thought of as a 
mapping from B°(s,d,0) to S* given appropriate t>0. The appropriate ( > 0 is 
such that (j)'^(d*,0,t) n S* 9^ 0 with (d*,0) e B°(e,0,0). The inverse of the 

mapping from S* to B°(e,d,0) would have the following form, (^^(6,U5,-t) with t 

> 0 which appropriate. This mapping is a diffeomorphism [43] due to the fact 
that ^(0,07,^) is continuously differentiate and is unique with respect to (6,US) 



www.manaraa.com

103 

and t. It is shown in example 3.3.17.1 of [43] that since W^(6^,0) has zero 
measure in dA(6^,0) the set S** cB°(e,d,0) defined by S** = { (0,tn) e 

S* n W^(6^,0) with appropriate t > 0} has a Lebesque measure of zero in 

B°(e,d,0). In other words, the set S** takes up no volume in the set B°(e,Q,0). 

With this in mind it can be said that almost nowhere in the set B°(e,d,0) are 

initial points (9,0) such that <t)^(d,0,t) intersects a stable manifold of 

dimension (n-l)-k, 1 <k < (n-1), t > 0. Therefore, it can be said that the point 
(9^^,0) for all practical purposes is not in the set S**. Hence, (9^^,0) is such 
that (1)^(9^^,0,t) intersects a stable manifold of dimension (n-l)-l, t > 0. With 

this in mind the following assumption is made. 

Assumption 5.3 
Assume that the controlling UEP 0" is type-I. 

Let SH9"-) = { 9 \ VPE(9) > VPE(9"')} where VPE is defined by 
equation (3.5c). Denote the set S^^sh(9u.) (zR(^-^)giS S^^sh(Su) = { 9 -, 9 e S^(9^) 

and there exist a continuous path that connects 9 with 6" such that every 
point on the path is in the set S^(9^) }. Denote dS^^sh(Qu) as the boundary of the 
set The set S^^sh(9"-) is an open subset of and hence a (n-l)-l 

dimensional manifold [44, Chapter 11, Theorem 2.9]. 
Note that W^(9^)\{9"'} cz S^^sh(Qu) and this is so because as shown in 

Theorem 3.2.1 of Section 3.2, VPE decreases along the trajectories in W^(Q"'). 

The next five propositions and assumptions along with general 
remarks are given so that a (n-l)-l dimensional manifold can be defined. 

Proposition 5.4 
Given 9^ e S^^sh(9^), form the ray Sray(9^) and note that a = 1 on the 

ray at the point 9^. There exist a af^,0 < aP- < 1 and > 1 such that 
Sray(9^) D dS^^sh(9^) yi 0 at « = o" and at a = o^. 

Proof: 
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From the definition of the set S^^SH(0U) the point 6^ E S^^SH(QU) has a 

higher energy value than the point 6" (i.e., VpE(d^) > Vpe(6'^)). Also, 

note that since 0" e dA(6^) and VPE decreases along the trajectories of 

the gradient system, Vpe(6'^) >Vpe(9^). Therefore, Vpe(6^) >VpE(d^). 

At the point 6^ e Sray(0^) the value of a is 2. Consider the connected, 
c o m p a c t  i n t e r v a l  [ 0 ,  1 ]  a n d  n o t e  t h a t  f r o m  e q u a t i o n  ( 5 . 1 )  V p e  = 0  a t  a = 0  
on the ray and VPE = VPE(D^) at A = 1 on the ray. From the 

Intermediate Value Theorem and the fact that Vpe (5.1) is continuous 
on the ray there exist a e [0, 1] such that Vpe= VpE(d"-) at a = a«. 
Because of the value of Vpe at a = a«, cc® must be such that a» e (0, 1). 

Also, from the preceding argument there exist a aA e [0, a^J with 0 < 
VpE((d^ - 6^) + ^) < Vpe((6^ - 9^) + 0^). Because of the values of 
VpE at a=0 and VpE at a= e (0, cfi). 

As shown in Section 5.1 the function Vpe (5.1) is an almost periodic 
function of a on the ray. Let 7= Vpe((&^ - o" + - Vpe((6^ - Q^) + 

6^) > 0. Set X such that 0 < x< Y- From the definition of an almost 

periodic function as given in Section 5.1 there exist a scalar i(x) > 0 
such that for any interval I cR+ of length i(x) there is a el with 

I V p E ( ( e ^ -  e ' )  + e') - VpE((e^- e") + «0 + e')\<x< y 

Take the interval / such that a> 1, V ae I. Now, it is seen that 

> 1 and VPE((&^ - 6^) + a {) + < VPE((0^ - 01) a" + Apply the 

Intermediate Value Theorem once again. It is known that > 1 

and that Vpe((B^ - G^) (A^ + a ^) + 6^) < Vpe((9^ - a" + There 

exist a aP e [1, + a , where [1, + a is a connected, compact 

interval, such that VPE = VPE(6'^) at a= a^. Because of the values of 
VpE ata=l, and VPE at a= + a^, e (1, cé + a^). • 

Given 6^ e Qu)^ start at a value of a = i, decrease a to a = 

where VPE((6^ - 0^) oc®"" + = VPE(0"). Start at a value of a = I, increase A 
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to a = where Vpe((6^ - 6^) + 6^) = Vpe(6^). From Proposition 5.3 the 
two values a®®" and exist, define the corresponding open interval = 
fa®"", the compact interval = /"a®®", and the set S^(6^) = { 0: 6 e 

Sray(ô^) for « 6 Note that C n Sray(d^)-

Proposition 5.5 
Let 6^ e S^^sh(Ou)^ There exist a. a"^ e 7"°", where is defined above, 

such that VpE (5.1) attains a local maximum along the ray Sray(6^) at a 
= 

Proof: 
Consider the compact interval /«c" as defined above. Because VpE is a 
continuous function of a on the ray the Extreme-Value Theorem 
implies that there exist a a* e such that VPE((Q^ - 6^) a* + Q^) > 

VpE((d^ - 9^) CC+ 6^) for a e Since Vpe at a = 1 is greater than both 
VpE at a = a®®" and VpE at a= this implies that a'" e From 

equation (5.2) it is seen that the equation for dVpE/da along the ray is 

g((e^- d')a +e')-(d^-e') (5.3) 
da gQ da 

The vector function g((&^ - 9^) a+ 6^) is given in Appendix A, Section 

A.3 and is repeated here in scalar form as 

n-1 
gi((d - 6^) a+ d^) = • ^ Cij sin {i2ij a+ dt - dj) 

j = i  
yV» 

' Cin sin {AI a+ 6i+ m®) 

where £2ij, Ai and are defined in Appendix A, Section A.3. It is seen 

that 
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-  M® g( (d^-  e ' )a" '  +d ' ) - (e^-  e ' )  =  o  (5.4) 

Since equation (5.4) is composed of sine terms, the root a'" of equation 

(5.4) is isolated and hence, VPE at a = a'" is a local maximum along the 

ray. • 

Assumption 5.6 
Let 6^ e S^^sh(Qu) Given the open interval as defined above 

assume the following. There exist only one a"^ e such that -M® 
G((D^ - Q^) + 6^) • (6^ - 6^) = 0. In other words, it is assumed that 

there is only one maximum of VPE on the ray Sray(d^) when VPE is 

evaluated in the interval 

From Proposition 5.5 it is seen that if 6^ e there exist a a'" e 
/cou such that there is a local maximum of VPE on the ray SRAY(O^) at 

where is defined above and by Assumption 5.6 this maximum is the only 
one occurring on the ray Sray(O^) in r\ Sray(ô^)- Hence, satisfies 
-M^ g((&^ - 6^) aP^ + ^) • (6^ - 6^) = 0. Let 6^ = ((6^ - 6^) + 6^) and note that 

g The term (6^-6^) only denotes the direction of the ray and (6^ 

- 6^) denotes the same direction, hence, -M^ g(&^) • (6^ - 6^) = 0. 
Denote the function G(6): S^^sh(Qu) —^ R as G(6) = -M^g(d) • (6 -

Denote the set 8^(6"-) = { 0 : 6 e S^^sh(Qu)^ G(d) = 0 }. It is seen from 

Proposition 5.5 that the set 8^(6"^) is non-empty. The set S^(6"') can also be 
denoted by G-^(0). 

Proposition 5.7 
The rank of the mapping G(6): S'^^sh(Qu) is 2, V Oe S^( 6^). 

Proof: 
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Let 6 e S^(6^) and change the local coordinate system so that one of the 

new coordinate axis is in alignment with the ray Sray(O). Since 6 e 
S^(6^) there is a local maximum of VpE at the point 6. Since this 

maximum is local or isolated this implies that the partial of G(0) along 

the coordinate axis, which is in alignment with the ray, is not zero. • 

Proposition 5.8 
The set 8^(6'^) is a closed, regular (n-D-l dimensional submanifold 

denoted by M®. 

Proof: 

Given the result of Proposition 5.7 apply Theorem 5.8 and Collary 5.9 
from [45, p. 79-80]. • 

Proposition 5.9 
Denote the nonempty set = Sray(^^(&"•)) M®; the set ig a 

regular (n-l)-l dimensional submanifold denoted by 

Proof: 
Take any point 6 e W^(6^), then from Proposition 5.5 and Assumption 

5.6 Sray(Q) ^ 0. The function Sray(d): W®r9"-) czM^ can be 

considered a difFeomorphism with the obvious inverse from to 
Apply Corollary 1.5 from [46] which states that SrayC^^(G^)) n 

is a regular submanifold of dimension m <(n-l)-l. The same 

result applies to the inverse so that Sray(M^^) n W^(6"-) is a regular 
subman i fo ld  o f  d imens ion  (n -D- l  <m .  I t  fo l lows  t ha t  m = (n - l ) - l .  •  

Assumption 5.10 
Assume that VPE((6^ - 6^) a+ 6^) < VPE(6"') V a e [0, 1). 
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Proposition 5.11 
n 

Proof: 
It is clear that 0" e dS^^sh(eu)^ It is clear from Assumption 5.10 that 

there is a maximum of VPE on the ray SRAY(6^) at the point 0". Take a 

sequence of points (6°^}j=i cr W®('d"') such that -> 6^ as j -> °o. It has 

been shown in Proposition 5.5 and Assumption 5.6 that there is an 
unique maximum on the ray Sray(0°'j) in the submanifold c-

S^^sh(Qu) het {6^"^}j=2 c: Mbe the corresponding sequence of 

maximum points on the rays defined by Since VPE is continuous it 
follows that -> asj oo. This gives the result that 0" e dM^^. 
Hence, 0" c dS^^sh(Qii) n dM^^. It can be seen that points in 

directly correlate to points in (9W®C0"J. Now show that 0" is the only 
point in dS^^sh(Qii) rt dM^^. It is seen that for all 0 e dW^(6"')\{d"^}, 

VPE(0)> VPE(6^)- It is clear that Sray(ô)7^ 0. This implies that 
(Sray(d) ^ dM^^) G M^. It is dear that dS^^sh(Qu) n = 0. Therefore, 
this implies that dS^^sh(Qii) ri = 0 for all G e dW^(d"')\{6"^}. 
Hence, 0" = n dM^w, • 

Let e The point should be thought of as an element 

from the sequence {d'"^}i=o as defined in Section 5.1 which results from the 
application of the shadowing method. At the point df^d-V there is a 

corresponding equipotential surface or as sometimes referred to a level set. 
This level set is denoted by VPE'^(VPE(6^^^'^^)). Note that a critical point of VPE 

is equivalent to an equilibrium point of the gradient system (3.11). If 6"^(i-V is 
not a critical point of VPE then dVpE(6^(^'^^)I dOi 0 for at least some i e [1, 

n-1] and if this is so the rank of the mapping VPE- E is 1 at the point 
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Proposition 5.12 
The level set VPE'^(VPE(6'^^^'^^))\{ critical points of VPE in VPE' 

^(VPE(G'^^'''^^))} is a closed, regular (n - l ) - l  dimensional submanifold 
denoted by 

Proof: 

This is shown in Example 5 from [37, p. 155]. The actual proof is 
Theorem 5.8 from [45, p. 79-80]. • 

Based at the point e is the negative gradient vector - V 

VPE(0'^^^'^^) = This vector is normal to the (n-l)-l dimensional 
submanifold at the point 

The vector z(6'^(^-^0, which is based at the point points in the 

direction of decreasing VpE since it is the negative gradient vector. The ray 
Sray(G^^'"^^) and the vector which are orthogonal to each other, span 
a two-dimensional plane T2 = span{Sray(d^^^'^^), . Let De(6'^(^-^^) cTg 

be an open disk of radius e> 0 centered at the point Let e be such that 
6^ 0 £>/&n(i-i)) then it can be seen that since Z)/Gr^d-D) c T2 the ray Sray( 

separates the disk into two disjoint sets. Denote these two sets as 
a n d  a n d  l e t  n  z ( ^  0  a n d  n  z (  
= 0. 

Assumption 5.13 
Assume there exist a sufficiently small e with 6^ 0 D/such that 
VPEO) < VPE(&^('-^>), V E E SO£L(FFN(I.I)) CSHIGH(FFI). 

Let dp = (z(6^(^-^^) p + Take ^° > 0 so that dp e Vpe 

(0, ^°). This ^o> 0 does indeed exist which follows directly from Assumption 

5.13. 
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Proposition 5.14 

Take a sequence of points f 8%=; c  {  6 :  6  =  dp ,  p  e  (0 ,  }  such that 

as j  oo ,  with , where d(-,-) is the 
2-norm. There exist an integer k > 0 so that for j > k, Sray(d^j) n 
SD£L(^(i-i))n 

Proof: 
It follows from Proposition 5.5 that Sray(9^ r) ^ 0. For every let 

be the corresponding point in M® (i.e., e M®). From 
Assumption 5.6 this point 6s/ is uniquely determined. It is seen as j —> 
0°, OSJ since e and is a regular manifold. In 
other words, d(6SJ,6m(i-V) q as j Hence, there exist an integer L 
> 0 such that dCdsJ,d'n(i-V) < e , V j > L. Therefore, for j > L, 6sJ e 
gDsL(Qm.(i-i)) ^ where is denoted in Assumption 5.13, so k can 

be taken ask>L.  •  

Proposition 5.15 
If the solution of the gradient system is approximated by 
an one-step Euler method then the solution will have the form 9"^ = 

+ z(&n(i-i)) Let 9"' = Sray(6^0 H M^. Given e and g 

H there exist a tie > 0 such that for ti e (10, W, Vpe(6^^) < Vpe(6^^^'^^). 

Proof: 
It follows from Proposition 5.14 that there exist a e (0,^) such that 

Sray(Op) D D 7^0, V p 6 (0, ^°). The Euler solution 
would give exactly the same point dp if U = p. Therefore, let tie = * 

Due to the assumptions and propositions given in Chapter 3 pertaining 
to the stability boundary of the gradient system and the assumptions and 

propositions given in this section the following result is seen to be true. Let 
0^ e As noted in Proposition 5.1 Srayi^^) dA(GP) ^0. It was also 
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assumed that this intersection consisted of a singleton set. Suppose Sray(8^ 

n WH6^) ^ 0 and Sray(O^) n 9^0. Since it was assumed in Assumption 5.3 
that 0" is type-2, 'W^(d"') has dimension (n-l)-l which is the same dimension 

as the stability boundary. Take any vector v(0^) which is based at the point 0^ 

and is orthogonal to SrayCB^)- Take a sequence of points that converges 
to 9^ as J oo such that d(d^J,9^) > ^9^). It follows that there exist an 
integer L  >  0  such that V j > L  S r a y ( O ^ j )  n  W®C0"J 0. This further implies 
that there exist a ii^(9^) > 0 and an interval 1(9"^) defined by I(9^) = { 9:9 = 
9W + y(QW) (0,m^(9WJ) } such that SraydO"^)) n ^ 0. 

Since 0" was taken to be the type-2 controlling UEP, Ang((l)^(9^^,0,t)) n 

W^(9'^) ^0 for some t> 0. It was explained on a heuristic basis why the 
approximate exit point, 9^eso. g Ang((j)^(9^^,0,t)), is relatively close to 

W®('0"J.and this was due to the shape of the equipotential contours of VpE 
around W^(9^). The same argument can be applied to the ray concept. The 

mechanism for detecting the point 0^0 was presented in Section 5.1 It seems 

reasonable then, to argue that Sray(G^^) ri W®C&^) 0. 

Proposition 5.16 
Given 0'"® e with 0'^^ g H,  then there exist a sequence of non

empty intervals { (0, FJ) such that by utilizing the Euler method for 
the solution of the gradient system with TI E (0, FJ) the resulting 

sequence {6'^''}i=o converges to 0". 

Proof: 
It has been shown in Proposition 5.12 that given 9^(i-V e and 

0 H there is a corresponding interval (0,tie) such that Vpe(0"^^) < 
where 0'"' = + z(9'^(^-^^) tj) n for ti e (0,tie). 

Therefore, pick (0, Fj) cz(0,tie) such that for V ti e (0, Fi), (9^('-V + z(9^(^-

tj) e I(9^(^-^^) and 0"^' g H. Therefore, for each i, Vpe is decreasing 

along the sequence /0™V^o and {9'"''}i=o cM^^. However, {9"^%=o c 
Shigh(Qu) so that Vpe(6"^^) > Vpe(6^) for all i. 
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Suppose that for every possible sequence with ti e (0, that the 

resulting sequence {9'^^}i=o converges to some point 6" e If 

/^0'"Vi=o —> 6 ^  s  then d ( 6 ^ 0  - >  0 as i «> or ijP(&n(i-i)) - ^ o  as i 

-> oo. If —> 0 as i —> this implies that tie -> 0 and 
further implies that the e-disk as used in Assumption 5.10 shrink to a 

zero radius. This shows a contradiction against Assumption 5.10 
since for any e the disk has a non-zero radius. The same 
argument applies for i J .O(0m( i - i ) )  ^  g as  i  ->  oo  which shows a 

contradiction since IJP(9^) > 0. Therefore, the sequence {d^^}i=o c 
must converge to some point on dS^^sh(Qu)^ It has been shown in 
Proposition 5.11 that 0" is this point. • 

The main result of this section was Proposition 5.16. Therefore, it can 

be theoretically stated that by applying the shadowing method with employing 
the Euler integration method for the numerical solution of the associated 

gradient system and with the appropriate elements of the sequence for 

the Euler method the resulting sequence {9'^'^}i=o converges to 6" and Sray(9^0 
n W^(&"•) ^ 0. Again from previous discussion it may be argued that 0'"' is 

relatively close to This idea is reflected in Figures 5.2, 5.3 and 5.4 

where the points from the resulting finite sequence f0'"Vj=o seems relatively 
close to and is relatively close to the controlling UEP 6^. 

5.4 Concluding Remarks on the Shadowing Method 

The first three sections of this chapter contained the algorithm of the 

shadowing method, two examples that numerically illustrated the 
shadowing method and an analytical foundation for the method. 

In this section three remarks are put forth that pertain to the 

shadowing method. The three remarks are focused on: 1) the infinite 
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sequence and the Euler method, 2) the time value ti that is used and 3) 

the usefulness of the sequence 

Remark 1. The infinite sequence and the Euler method, 

Suppose that the Euler method is employed to numerically 
approximate <j)gs(9,t) in the shadowing method algorithm when applied to the 

unloaded gradient system model. Then, by Proposition 5.16 there exist an 

infinite sequence of time steps such that the resulting sequence r0'"Vi=o 
converges to the controlling UEP 0". Two points need to be made about the 

infinite sequence of time steps . First, it was shown how to construct this 
sequence in the proof of Proposition 5.16 and this consisted of ti satisfying two 

constraints. Hence, additional computation is needed to provide verification 
of these constraints. Secondly, it is impossible to perform the algorithm of the 

shadowing method when an infinite sequence is involved. 

It must be remembered that the practical purpose of applying the 
shadowing method is to produce a point 6"^^ that is relatively close to the 
controlling UEP 0". Then, when the nonlinear algebraic solver is applied 
there is no doubt that the point 6^^ is in the domain of convergence of 6" and 
that 0« will be produced. Hence, if the three step cycle is numerically 

processed a relatively large number of times with acceptable ti's the last point 
in the sequence should be relatively close to 0". 

This idea is reflected in the two examples given in Section 5.2. The 

relatively large number of three step cycles were 28 and 36 for example 1 and 
example 2 respectively. The main result also supports the idea of the 
stopping criterion for the three step cycle process. This stopping criterion is 
based on the 1-norm of the vector z being smaller than a given value /Î. It can 

be seen that as the infinite sequence /0'"Vj=o converges to 0" the 1-norm of the 

vector z must go to zero. 

In the numerical algorithm describing the three step cycle of the exit 
point method the true solution (pgs(6,t) of the gradient system was 

implemented. In the actual numerical scheme this solution needs to be 
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approximated numerically. The numerical scheme that was assumed in the 
mathematical foundation of the shadowing method was the Euler method. 
The Euler method was picked for the convenience of proving Proposition 5.15 

and the claim made in Proposition 5.16 is not that by only applying the Euler 
method will the sequence converge to the controlling UEP. It is, however, 
strongly believed that the same conclusion of Proposition 5.16 can be proved if 
the true solution of the gradient system, namely (pgs(d,t), is used and this will 

be attempted. 

The numerical ordinary differential equation (ODE) solver method 

used in the shadowing method when applied to example 1 and example 2 was 
the 4th order Runge-Kutta method and not the Euler method. This is simply 
because the 4^^ order Runge-Kutta method numerically approximates the 
true solution better than the Euler method. 

Remark 2. The time value U that is used, 

Since construction of an infinite sequence of time steps is impossible a 
finite one is constructed. It was noted earlier that if the Euler method is used 

it would be computationally cumbersome to verify if ti is satisfactory. Since 
the Euler method may not be employed the verification process of the time 

step may not be applicable. Therefore, the ti need to be chosen on a heuristic 
basis. 

Suppose that Proposition 5.16 has been shown to hold true when the 

actual solution of the gradient system is used in the shadowing algorithm. 
What is needed to make the shadowing technique most effective is if these ti's 

can be chosen optimally. Or in other words, determine an optimal finite 

sequence {tijfii such that the amount of computation time is minimal with 
the objective being that 6"^^ is in the domain of convergence of 0". At the time 

of writing this dissertation there is no known scheme that will produce this 
finite time sequence and thus, this a future research project. 

In both example 1 and example 2 from Section 5.2 ti = 0.1 was chosen 

and this was kept constant for all ti in the finite sequence {tildi. It might 
* N 

seem as the points of {d"^''}i=o get relatively closer to 0" the corresponding ti 

must be chosen smaller and smaller. This need not be the case since near 
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the UEP the length of the vector becomes smaller and smaller. 

Hence, ti becomes smaller and smaller and this is the basic 

mechanism that advances the sequence. 

Remark 3. The usefulness of the sequence {d'^^}i=o, 

The method that is described in this chapter is referred to as 
shadowing the stable manifold. Upon the numerical application the method 

produces a sequence of points As explained in Section 5.1 it is 
called shadowing the stable manifold because it is thought that the points 0^' 
are relatively close to W^(d"'). This closeness depends on the shape of the 

equipotential energy surface around W^(6"-). From the numerical examples 

such as the ones given in this chapter it does seems as if the points in the set 
are relatively close to the points in the set 

' N 
However, the implication that every point in may be close to 

W ® C w a s  n o t  t h e  f o c u s  o f  t h i s  c h a p t e r .  T h e  f o c u s  w a s  o n  t h e  p r e d i c t i o n  t h a t  

the last point in {d'^%=o, 6^^ might be relatively close to 0". In fact 

converges to 0" if the ti's are chosen appropriately. If, however, it is such 
that points in 6^) are relatively close to points in then the sequence 

* N 
/^0'"Vi=o may be used in some fashion to determine how the stability boundary 
in terms of the stable manifold might change as system parameters 

such as Cij change. 
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6. INCLUSION OF TEtANSFER CONDUCTANCES INTO THE POWER 

SYSTEM MODEL 

The swing system that was presented in Chapter 3 and the associated 
gradient system that was presented in Chapters 3, 4 and 5 were based on a 
lossless power system model. That is, a system when reduced to the internal 

generator buses had no transfer conductances present in the resulting YBUS 

matrix. This reduced system is realized when the system has no line 

resistance and no real load. The swing system model, however, cannot be 

considered Hamiltonian [34] since energy is dissipated because of the 
presence of non-zero uniform damping. 

The assumption that transfer conductances can be neglected is 
unrealistic [12] and hence, it is considered that the swing system model does 
not realistically model the dynamic behavior in a real power system. The 

reason that the transfer conductances were neglected is to make possible a 
rigorous mathematical analysis of the swing system and gradient system. A 

property that was shown to hold for both the swing and gradient system was 

that the stability boundary was equal to the union of the stable manifolds of 
unstable equilibrium on the stability boundary. This property was shown to 
hold due to the existence of a valid energy function as shown in Chapter 3. 

However, the existence of such a energy function when real load and line 
resistance are included in the system is still unclear at the present time. 

The contents of this chapter is an explanation of what happens to the 
properties of the swing system and gradient system when transfer 

conductances are present in the system. 

Section 6.1 The effect of the inclusion of transfer conductances on the 

structure of the stability boundary of the gradient system 

is analyzed. The effect of the inclusion of transfer 

conductances on the structure of the stability boundary of 
the swing system model from Chapter 3 is analyzed. 
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Finally, the effect of the inclusion of transfer 
conductances on the connection between the gradient 
system and the swing system is analyzed. 

Section 6.2 Transfer conductances are introduced into the unloaded 
3-machine system. Static bifurcation is observed and this 

phenomenon is briefly analyzed. Finally, the stability 
boundary of the lossy gradient system for the 3-machine is 
examined through vector field plots. 

6.1 Persistence of Properties with the Inclusion of Transfer Conductances 

6.1.1 The Lossy Gradient System 

In this section it is shown that for the function Vpe (2.11b), Ype < 0  
along the asymptotically stable trajectories with respect to 0® of the lossy 

gradient system. The trajectory needs to start within the stability region 
A(Q^) because VPE is path dependent and is evaluated with respect to the 
asymptotically stable equilibrium point 6®. This result seems somewhat 

trivial but it points out the following fact. The function VPE (2.11b) cannot be 
used to show that VPE < 0 along a trajectory in dA(6^) which is the idea that is 

employed in showing that the stability boundary is equal to the union of the 
stable manifolds of unstable equilibrium on the stability boundary. 

The associated gradient system, which is derived from the swing 

system, was defined in Section 3.2 and is repeated here in vector-matrix form 

as 

è = -  W p E  =  ' - ^ ^  =  z  =  M ^ g  
dd 

The derivative dVpstdd was given in Appendix A, Section A.2. As 

noted in Section 3.1.1 the function VPE (3.5C) is equivalent to the VPE function 
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given by equation 2.12 vdth Dij = 0 (i.e., neglecting transfer conductances in 
the reduced YBVS matrix). Also, the function GI (3.2) is equivalent to FI, (2.8), 

when DIJ = 0. With DIJ = 0 the derivation of VPE as shown in Section 2.2 
becomes 

where 0(t) is some path parameterized by T, 0 < T <t, with 0(0) = 6^ and 0(t) = 

6. Note that because the system is lossless the above integral is path 

independent and this follows from a similar discussion as given in Section 

2.2. This integral can be evaluated and a closed form expression for VPE 

results and this is equation (3.5c). 

When transfer conductances are present the gradient system will be 

denoted as the lossy gradient system and will be defined as follows with the 
new variable w introduced 

It was shown in Section 3.2 that the equilibrium points of the gradient 
system are hyperbolic. Since there are transfer conductances present, the 

vector field w (6.1) is not the gradient of any scalar fiinction, therefore, it will 

be assumed that the equilibrium points of the lossy gradient system are 
hyperbolic. As first assumed in Section 3.2 the stable and unstable manifolds 
are assumed to intersect transversally. Again, it will be assumed that 6^ is 

an asymptotically stable equilibrium point for the lossy gradient system (6.1). 
Since 6® is asymptotically stable there exist a stability region A(6^) 

which will be assumed not dense in With this assumption there exist 
a stability boundary for AC©') denoted by dA(6^). Again, (l)gs(d,t) will be denoted 

as the solution to (6.1). 

In order to show that VPE < 0 along the asymptotically stable 
trajectories with respect to 6^ of the lossy gradient system the following is put 
forth. Let 6 e A(9^), then (pgs(d,t) —> 6^ ast —> Let Q( T), parameterized by T, 

VPE(0) 

6  =  M ^ f =  w  (6.1) 
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be the path taken by i)gs(6,t) as i oo but oriented in the opposite direction. 
Define VpsC6) as 

where 0  < t  <T ,  0 (0 )  =  0® and 0(1) = Q. It is thus seen from the integral (6.2) 

that VPE(Q^) = 0. Since the path taken by 0(T:) is oriented in the opposite 
direction as (l>gs(6,t) it follows that d^x)ldx= • w(0('c)). The integral (6.2) now 

becomes 

For the integrand in the integral (6.3), w(0(r)) • W(0(T)) > 0 for 0(r) 0 H. 

The set H was defined in Section 3.2 as the set of all equilibrium points for the 
lossless gradient system. Here the set H will be denoted as the set of all 
equilibrium points for the lossy gradient system. Since 6 e A(6^) for integral 
(6.2) and integral (6.3) and ^gs(0,t) e A(6^) V0 <t < o°,U)(0(%)) • u}(0(x)) > 0 for 

0 <x <T. This implies that VPE(6) > 0 for 6 e A( 6^)\{6^}. 

The function VPE(O) with 0 E A(6^) can also be formulated in another 
manner. The path 0(%) can be taken as ^gs(d,t), t -> <=«, and oriented in the 

same direction as ^gs(d,t) with 0(0) = ^gs(0,0) and = 6®. The integral now 

takes the form 

VPE(O) w(0(r)) (6.2) 

VpE(e) (6.3) 

VpE(d) = lim T w(0(x)) • dx 
dx . 

(6.4) 

Since 0(x) is oriented in the same direction as (j)gs(Ô,t), d0(x) Idx= w(0(x)) and 

the integral (6.4) can be written as 
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f T =  T  

VpE(d) = oo I [w(0(r)) • w(GKt)) ] dr (6.5) 
J t = 0  

It can be seen that as T w(Q(T)) 0,. However, this does not imply that 

the integral (6.5) exist, therefore, it will be assumed that it does. Again for 
the integrand of integral (6.5), w(Q(x)) • w(Q(x)) > 0 for 0 <T < «>, SO that 
VpE(e) > 0 for 0 e A(e^)\{m. 

Given VpE(d) (6.5) for 6 e A(6^) it will be shown below that Vpe < Ofor 6 
e A(6^). Let q(Q(x)) = w(©(i:)) • W(0(T)) > 0 for 0(T) e A(6^)\{6^}. The time 

derivative ofVpEO) is defined as 

=1™/. ̂  0 - Vp/«JJ] 

This can be formulated as 

VpE = lim ft 0 ^ 

r r = T  f T = T  

lim T ̂  j q(0(T)) dx - lim r j q(Q(r)) dt 
J r = h  J r = 0  

r T =  h  

VpÊ =  l im; t_^  o f - l  -  I  q (Q(z ) )dx  
f t -  n  

"n  L  
From the Mean Value Theorem for Integrals it is seen that 

r x =  h  

I q(Q(x)) dx = q(Q(^) h îoTO<^<h 
J r ^ O  

Therefore, in the limit as h 0, VPE = • q(d) <0. 

In order to show that the stability boundary is equal to the union of the 

stable manifolds of unstable equilibrium points on the stability boundary 

there were three conditions that needed to be satisfied [47, Section 4]. The 
first two are hyperbolic equilibrium points on the stability boundary and 
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transversality at the intersections of stable and unstable manifolds. The 
third is that trajectories in the stability boundary converge to an equilibrium 

point in the stability boundary. This third condition was shown to be true for 
the lossless gradient system as shown in Section 3.2 by utilization of the 

function VPE (3.5C). The VPE from equation (6.5) is shown to decrease along 
asymptotically stable trajectories with respect to 6® of the lossy gradient 

system. However, this VPE function (6.5) cannot be utilized to show that 

trajectories in the stability boundary converge to an equilibrium point in the 

stability boundary. This is due to the fact that VPE (6.5) is path dependent. 

Therefore, it is unclear if the stability boundary is equal to the union of the 
stable manifolds of unstable equilibrium points on the stability boundary. 
Hence, it must be assumed that trajectories in the stability boundary 

converge to an equilibrium point in the stability boundary in order to show 
that the stability boundary of the lossy gradient system is equal to the union of 

the stable manifolds of unstable equilibrium on the stability boundary. 

Another interesting point can be made. The vector field of the lossless 

gradient system was defined by the negative gradient of the function VpE 
(3.5c). However, for the lossy gradient system the vector field given by (6.1) is 

not the negative gradient of the VPE (6.5) as shown below. Let CI be the path 
taken by ^gs(d,t), t oo. The integral (6.5) can be formulated into a line 

integral along the path C/. 

The negative gradient of Vpe will take the form -dVpElddi, i = 1,n-1. 

From the definition of the derivative 

VPE(6) (6.6) 

VPE(6+ h aû- VPE(d) 
h ddi 

where at is an unit vector in the same direction as the coordinate axis 
corresponding to di. Let Cg be the path defined by ^gs(d + h ai,t), t -> where 
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h  is small so that ( d + h  a O  e  A ( 0 ^ ) .  The partial derivative dVpEld9i now 

becomes 

dVpEO) 
= liniA 0 r 

ddi h I  
f 

w(0J-d0 -j w(0) -d0  
(8+ h ai) C2 Jo Cl 

lim^ ^ 0 ^ I  
(6+haO r8  

w(0) • do + 1 w(0) • d0 
e° -C2 JQ Ci 

lim/i - ^ 0  ^  I 
(6+  h  aO 

w (0 )  do  
B -C2 + CI  

(6.7) 

Suppose this integral (6.7) was path independent. Then the integral 
(6.6) in the limit would be [48, Section 16.3] 

dVpE(ô) 
= -Kmft ^ 0 ^ 

dOi h 

(Q+ha i )  

9 C3 
w(0) • d0 = - iVi(6) 

where C3 is some arbitrary smooth path connecting (d + h aO and 6. 

However, since the path is -C2 +Ci and the integral is path dependent, it can 
be stated that in general 

dVpE(d) 

dO;  
^  -  Wi (d )  

Therefore, the lossy gradient system cannot be formed by the negative 
gradient of VPE (6.2). 
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6.1.2 The Realistic Power System Model 

The differential equations of the classical model in the COI reference 

frame are given by equation (2.6) and are repeated here in vector-matrix 
form. 

C7=M"V 
(6.8) 

6= CD 

Similar to what was stated in Section 6.1, in order to claim that the 
stability boundary of the classical system is equal to the union of the stable 

manifolds of unstable equilibrium on the stability boundary three conditions 
needed to be satisfied. The first condition is that equilibrium points on the 

stability boundary need to be hyperbolic. The Jacobian matrix for equation 
(6.8) (e.g. refer to Section 3.1 for the Jacobian for the swing system) will 

generally have zero real-part eigenvalues because the (n-1) hy(n-l) matrix 
M'^ Dgf will generally have all negative real eigenvalues. Therefore, in 

order that hyperbolic equilibrium points result non-zero uniform damping is 
added to the system (6.8). The derivation of the differential equations in COI 

with uniform damping follows directly from the discussion in Appendix A, 
Section A.l. The uniform damping is such that DilMi = c > 0 V i e [1, ..., n]. 

The differential equations in vector-matrix form become 

{n=M'^  f - cm 
(6.9) 

9= CD 

It is assumed that (6^,0) is an asymptotically stable equilibrium point which 
results in a stability region A(6^,0) and corresponding stability boundary 

dA(6^,0). The assumption of transversal intersection of the stable and 

unstable manifolds also needs to be assumed. The third condition again is 

that trajectories in the stability boundary of (6.9) converge to an equilibrium 

point in the stabiMty boundary. 
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The third condition was shown to be true for the swing system in 

Section 3.1 due to the existence of the function VPE (3.5a). It was shown in 
[49] that there does not exist in general an energy function of Lyapunov-like 

function that can be utilized in showing that trajectories in the stability 
boundary dA(9^,0) of (6.9) converge to an equilibrium point in the stability 

boundary. In the absence of any analytical justification pertaining to the 
convergence of trajectories in the stability boundary it must be assumed so. 

However, there are known cases where the assumption that trajectories in 
the stability boundary converge to an equilibrium point in the stability 

boundary are shown to be invalid for a system of the form (6.9). In references 
[49] , [50] and [51] it is shown that oscillatory solution of a system of the form 

(6.9) exist thus showing that trajectories do not converge to an equilibrium 
point. 

6.1  ̂The Connection Between the Realistic and Lossy Gradient Systems 

It is clear that 6 is an equilibrium point of the lossy gradient system if 

and only if (0,0) is an equilibrium point of the classical system. The main 
result from Section 3.3 is that 6 is an equilibrium point on the stability 
boundary of the gradient system if and only if (0,0) is an equilibrium point on 

the stability boundary of the swing system. It is unclear, however, if this 
property persists under the inclusion of transfer conductances into the 
reduced matrix. It is unclear because Theorem 5.2 from [21], which is 

one of the theorems needed for the result of Theorem 3.3.5 in Section 3.3, 
cannot be applied. In a part of Theorem 5.2 an energy function is defined in 
which the integral U(x) = J* f(y) • dy is used. When there are no transfer 

conductances dU(x)/dx = f(x) and this is the result needed in the theorem but, 

since transfer conductances are present it can be stated that in general 
dU(x)/dx fix). Hence, this part of the proof does not seem to hold but, there 

can be no claim made that the overall result of Theorem 5.2 in [21] is invalid. 
As pointed out in Subsections 6.1.1 and 6.1.2, it has not been proved 

that when transfer conductances are present in the system the stability 
boundary of the system is equal to the union of the stable manifolds of 
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unstable equilibrium on the stability boundary. In fact, in Subsection 6.1.2 a 
counter-example was shown to exist. Suppose that when transfer 
conductances are present in the system the stability boundaries of the 

classical and lossy gradient systems are equal to the union of the stable 
manifolds of unstable equilibrium on the respective stability boundaries. It is 

also unclear in this situation whether or not Theorem 3.3.5 from Section 3.3 
still holds. This theorem states that an equilibrium point 6 is on the stability 

boundary of the gradient system if and only if (6,0) is on the stability boundary 

of the swing system. 

In conclusion to this section, it must be stated that when transfer 
conductances are added a rigorous mathematical analysis of the resulting 
lossy gradient system and classical system is incomplete and many 

unanswered questions still remain. In light of this situation numerical data 
which resulted from an analysis on the 3 machine system will presented in 

the next section in order that some heuristic insight into the above mentioned 

problems be obtained. 

GJ2 Analysis of the Stability Boundary of the Lossy Gradient System 

The main result of Sections 6.1.1 and 6.1.2 was that when transfer 
conductances are included in to the reduced Y BUS matrix it is uncertain if 
both equations (6.10) and (6.11) given below hold. 

dA(d') = e HB (6.10) 

dA(e',0) = Ure'.o; e EB W'reW (6.11) 

The concept of the energy margin as defined in Section 3.1.3 was based 

on the idea that is shown by equation (6.11). In order to stay with this idea of 
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energy margin in a realistic power system it will be assumed that equation 
(6.11) is indeed true. 

The validity of equation (6.10) when transfer conductances are 

included into the system has a definite connection to the shadowing method 
which was described in Section 5.1. The shadowing method is used to 
shadow the stable manifold W^(6"') where 0" is the given controlling UEP. 

The definition of the controlling UEP as used in this dissertation work is 
given in Definition 3.1.6 from Section 3.1.2. The purpose of the application of 
the shadowing method is to derive a point which is relatively close to This 

technique was based on the lossless gradient system and was given 
analytical foundation for the unloaded gradient system model. Therefore, in 

order that the shadowing method be applicable in the system with transfer 
conductances it will be assumed that equation (6.10) is true. It will also be 

assumed that Theorem 3.3.5 firom Section 3.3 holds true. This theorem states 
that an equilibrium point 6 is on the stability boundary of the gradient system 

if and only if (6,0) is on the stability boundary of the swing system. 

Since the lossy gradient system (6.1) is 2-dimensional for the 3-
machine system, the stability boundary can be numerically observed through 
a vector field plot of (6.1). The 3-machine system was given in Appendix B, 

Section B.3 which will now be referred to as the loaded 3-machine system. As 

transfer conductances are introduced into the system the stability boundary 
of the unloaded gradient system as shown in Figure 4.4 will change. The 

objective is to see if the union of the stable manifolds of the lossy gradient 
system still represent its stability boundary. In other words, address the 
validity of (6.10) when transfer conductances are present. In the following 

subsection (6.2.1) transfer conductances are introduced into the unloaded 3-

machine system. It is seen that as the transfer conductances are introduced 

static bifurcation of equilibrium points occur and this is presented in 
Subsection 6.2.2. Finally, in Subsection 6.2.3 the vector field plots are given 

and examined. 
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6.2.1 Introduction of Transfer Conductances into the Unloaded 3-machine 
System 

For the purpose of introducing transfer conductances into the 
unloaded 3-machine system a new system will be needed which is a modified 

version of the loaded 3-machine system. The modification is that all line 
resistance is neglected. The solution data for this modified 3-machine 
system is given in Table 6.1. Note that in the 3-machine system buses 1 and 2 
are PV buses, bus 3 is the swing bus and buses 4, 5 and 7 are PQ buses. 

Table 6.1 Power flow solution data for the modified 3-machine system 

Bus 
number 

Voltage 
magnitude 

(pu) 

Voltage 
angle 

(degrees) 

Real power 
load (pu) 

Reactive 
power load 

(pu) 

Real power 
generation 

(pu) 

Reactive 
power 

generation 
(pu) 

1 1.025 4.873 0.00 0.00 0.85 -0.08 
2 1.025 9.483 0.00 0.00 1.63 0.19 
3 1.040 0.000 0.00 0.00 0.67 0.16 
4 1.011 •3.853 1.25 0.50 0.00 0.00 
5 1.018 0.872 1.00 0.35 0.00 0.00 
6 1.032 -2.060 0.00 0.00 0.00 0.00 
7 1.028 -3.482 0.90 0.30 0.00 0.00 
8 1.031 2.171 0.00 0.00 0.00 0.00 
9 1.022 3.902 0.00 0.00 0.00 0.00 

All per-unit values based on a system base of 100 MW 

Transfer conductances are introduced into the unloaded 3-machine 

system in the following manner. The unloaded 3-machine system is 

transformed into the modified version of the loaded 3-machine system by 
linearly varying the input data values to the power flow equations. The 
linear transformation takes the following form 

= rr""" - r""; A + r"" o<x<i (6.12) 
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The variable Fin (6.12) represents the following dififerent inputs to the 

power flow formulation: the terminal bus voltage magnitude and real power 

injection for the PV buses 1 and 2, the real power load and reactive power 

load for the PQ buses 4, 5 and 7 and the terminal bus voltage magnitude on 
the swing bus, bus 3. The super-scripts on the variable F represent the in-

intermediate values, //zu-modified version and M/i-unloaded. At a specific 
value 0Ï X,0 <X< 1, the intermediate values are calculated and with these as 

inputs for the power flow equations a solution is computed. For example, 
with X= 0.5 the intermediate value of the terminal bus voltage magnitude at 

bus 1 is 1.04 = (1.025 -1.055) 0.5 + 1.055pu. The value of 1.025 was taken from 

Table 6.1 and the value of 1.055 was taken from Table B.7 from Appendix B, 
Section B.3. 

To show how the stability boundary of the lossy gradient system 

changes as the system is transformed from the unloaded system to the 
modified system, the variable X will take on the values of A e [0.0, 0.02, 0.04, 
..., 0.98, 1.0]. For each of these values of A a power solution is determined. 

All constant power loads are converted, based on the solved bus voltage, into 

constant admittance loads. The transient reactances are included and the 
system is reduced to the internal bus of each machine. Finally, the internal 

bus voltage magnitude and angle are calculated. These internal bus voltage 

angles correspond to the SEP of the gradient system (6.1). The reduced Ybus 
has the form G + jB, where G and B have corresponding elements Gtj and Bij. 

The variables Cij = Ei Ej Bij and Dij = Ei Ej Gij are computed with Ei being the 

internal bus voltage magnitude for machine i. 
The equations of the lossy gradient system are given by equation (6.1) 

and are repeated here 

è  =  M ^ f = w  ( 6 . 1 3 )  

The vector function f is given in equation (2.7) from Section 2.1. Since the 
loading in the system is dependent on the parameter A, the variables Pmi, Cij 

and Dij are functions of A. The function fi is then given as 
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n-1 

fi = Pmi(^) - Dii(X) - 21 [Cj/Aj sin [Oi - dj) + Di/X )  cos  [d i  -  ©y) ]  
j = l  
j*i 

" sin (Af)6^ + M262 + • • • + 

" Diji(X) cos ^  { j M j d i  + M262 + • • • + Mji.jdn-l^ 

• ̂  i s DH/V COS (% - EJL 
= J j = fc+l 

+ ̂  2J ^KN(X) COS LOK + RR^YMJOI + M262 + • • • + MN-LDN-L)] (6.14) 
^ T k z z i  ^ ^n- ' 

and the positive definite matrix is defined as 

As A is varied fi-om 0 to i the resulting terms Pmi(X), Ci/X) and Dij(X) 
are seen to be smooth functions of A as shown in the plots of Figures 6.1, 6.2, 

and 6.3. 

6.2.2 Static Bifurcation in the Lossy Gradient System and Classical System 

Before any vector field plots of (6.13) are given a diagram of how the 
equilibrium points of (6.12) move in the state space as A is varied is given. 

When A = 0, the lossy gradient system is equivalent to the unloaded gradient 

system (i.e., Pmi(0) = 0 and Di/O) = 0 which can also be seen in Figures 6.2 and 
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Figure 6.3 The Dij terms versus the parameter A 

6.3). At this value of A the equilibrium points of interest are shown in Figure 

4.4. These equilibrium points are the twelve equilibrium points on the 
stability boundary and the SEP. These equilibrium points were first given in 
Table 4.1 and are repeated here in Table 6.2 so they can be numbered. As A is 

increased to a value of 0.01 the new equilibrium points are solved for by using 
the equilibrium points at A = 0 as initial guesses. This process is then 
continued as A is increased. Figure 6.4 is a diagram that illustrates the 

movement of the thirteen equilibrium points in the state space. The numbers 

correspond to the equilibrium points given in Table 6.2. The SEP is taken as 
number 13. Figure 6.4 can actually be described as a bifurcation diagram 

[34] projected onto the state space. The paths shown are the paths taken by 
the equilibrium points when A is increased. The arrows show the direction 
along the path in which the equilibrium move as A is increased. Similar 

diagrams have been constructed in [52] and [53], however, the COI reference 
frame is not employed in these two references. Reference [54] is a survey 

report of bifurcation and chaos in power systems. 
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Table 6.2 Equilibrium points on the stability boundary of the unloaded 
gradient system 

Equilibrium 
number Sources 

\ ̂  I J  

Equilibrium 
number Saddles 

1 (139.92", -122.68°) 7 (163.58°, -16.42°) 

2 (187.23°, 89.83°) 8 (128.69°, 128.69°) 

3 (70.14°, 167.55°) 9 (-34.89°, 145.11°) 

4 (-139.92°, 122.68°) 10 (-163.58°, 16.42°) 

5 (-187.23°, -89.83°) 11 (-128.69°, -128.69°) 

6 (-70.14°, -167.55°) 12 (34.89°, -145.11°) 

It can be observed in the bifurcation diagram of Figure 6.4 that static 

bifurcation [54, Section 2] occurs. Generally speaking, static bifurcation is 

defined by a change in the number of equilibrium points of the system as a 
parameter of the system is varied. Figure 4.3 from Section 4.3.2 is repeated 
in Figure 6.5 with the thirteen equilibrium points denoted. Also, shown and 
numbered in Figure 6.5 are four other equilibrium points which are of 

interest and are denoted as 14, 15 ,16 and 17. In Figure 6.5 unstable 

equilibrium points 14 and 15 are on the stability boundary of the neighboring 
stable equilibrium point 16. Note that the relative position of unstable 

equilibrium point 14 with respect to neighboring stable equilibrium point 16 is 

equivalent to the relative position of unstable equilibrium point 9 with respect 
to stable equilibrium point 13 and this is due to the symmetry in the system 

(6.13). In fact, equilibrium points 14 and 9 have been named identical points 

[39]. In the lossless case, VPE has the same value when evaluated at 
identical points. For A between 0 and approximately 0.60 all thirteen 

equilibrium points of interest are seen to persist. As A is increased through 

the value of approximately 0.60 static bifurcation occurs. The three pair of 
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unstable equilibrium points (2 and 12), (3 and 9) and (5 and 14 as shown in 
Figure 6.5) coalesce and any further increase in the parameter A these 

equilibrium points disappear. In each pair of these equilibrium points there 

is a saddle point and a source point. Note that the stability of the equilibrium 

points is with respect to the lossy gradient system (6.13). In Figure 6.4 the 
corresponding paths do not exactly touch due to the discrete set of values 
from which A is taken. 

At a value ofÀ-0.76 another three pair of equilibrium points, (7 and 2), 

(10 and 4) and (6 and 15 as is shown in Figure 6.5) coalesce and any further 
increase in the parameter X these equilibrium points disappear. Again the 

pairs appear as a saddle point and a source point. As the parameter is 

further increased to a value of just beyond 0.76 there are only three 
equilibrium points out of the original thirteen of interest still present and 
these three persist as A is increased to 1. These three are the SEP and two 

saddles, equilibrium points 13, 8 and 11, respectively. Note that if the SEP 

was non-existent after the parameter is increased beyond a certain value, all 

analysis of this type would have to stop because the construction of the 
parameters in (6.13) are evaluated around this SEP. 

The static bifurcation that is shown in Figure 6.4 seems to resemble a 
saddle-node bifurcation [33] [34] and [54] . This may be so because with 

respect to the dynamics of the lossy gradient system (6.13) a saddle point and 

an unstable node coalesce and then cease to exist for any further increase in 

the parameter value. However, it is not clear that this can be deemed saddle-
node bifurcation since certain conditions need to be satisfied in order that a 

strict claim be made on this type of bifurcation [34, Section 3.1.A], [33, 
Theorem 3.4.1, Section 3.4] and [54, Theorem 1, Section 4.2]. 

Since equilibrium points of the lossy gradient system (6.13) correspond 

to equilibrium points of the classical system (6.9) this static bifurcation 

occurs in the classical system as well. A saddle point (type-i) and a source 
point (type-2) pair coalesce with respect to lossy gradient system. It was 
shown in Theorem 3.3.3 from Section 3.3.3 that if d was a type-A equilibrium 
point on the stability of the gradient system then (9,0) was a type-/} 

equilibrium point on the stability of the swing system. Suppose that this 

theorem is true when transfer conductances are added in the system. 
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Hence, with respect to the classical system this pair consists of a type-i 
equilibrium point and a type-2 equilibrium point both which are saddles. 
This correlates to Theorem 1 from [58, Section 4.2]. This theorem provides 

conditions that need to be satisfied in order that saddle-node bifurcation can 
occur. As shown in this theorem, if indeed saddle-node bifurcation occurs 

and two equilibrium coalesce and one of the equilibrium points has SL k-
dimensional stable manifold (i.e., tyT^e-(n-l)-k) the other will have a (k+1)-
dimensional stable manifold (i.e., type-fn-iJ-A-2). This corresponds directly 
with a pair of type-i and a type-2 equilibrium points from the classical system 
that coalesce and then disappear. 

Finally, out of the thirteen equilibrium points of interest only three are 
still present at a parameter value of 1.0. Equilibrium points 1, 2, 3, 4, 5, 6, 7, 
9, 10 and 12 all disappear. One of the conditions that needs to met for a static 

bifurcation to occur is that the corresponding Jacobian must be singular. 

This is also equivalent to the Jacobian having a zero eigenvalue or a zero 
determinant. 

The Jacobian Jigs for the lossy gradient system (6.13) has the form of 
the following (n-1) x (n-1) matrix. 

Jlgs^M^Dgf 

where D g f =  d f i l d O j  for i = 1, ..., n-1 andj = 1,..., n-1. The Jacobian Jcs for the 

classical system (6.9) has a form similar to the Jacobian of the swing system 
as given in Section 3.1.3. The 2(n-l) x 2(n-l) matrix for Jcs has the following 

form 

Jcs~ 
0 I 

L M-^ Def -C I  

The scalar value c > 0 is the uniform damping coefficient which is the ratio of 

DilMi for all i of the system and will be taken as c = 0.1. Note that in the COI 
formulation 
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On = + M262 + • • • + Mn-lOn-l) 

With dn expUcitly shown the (n-1) x (n-1) matrix Dgf can be defined as 

— = È [- CY W COS - CinCX) §^0S - OJ 
d6i J=1 

j^i 

Mt I 
£ Dija) sin (9i - e,) + ^Din(X) sin - ej 

ivi n j = i  
L/Vi 

and for i^q 

dOa 
2 Mi 
MT 

Z Dgja) sin (dg - dj) + ^Dgna) sin (Og - dn) 
j = l 

M, 
Mn 

3-[Din(X) sin {Oi - dn) - Cin(^) COS (Oi - 0„)] 

+ ClgCÀ) COS (Oi - 6g) - Dig(X) Sl/l (g; " Og) 

Tables 6.3, 6.4, 6.5 and 6.6 present the determinant and the two 

eigenvalues of Jigs and the four eigenvalues of Jcs for the different equilibrium 
points as X is varied . 

One interesting observation can be made and is taken advantage of in 
presenting the eigenvalue data. Due to the symmetry in the system (6.13) [39] 

the following sets of equilibrium points have the same eigenvalues when both 

Jcs and Jigs are evaluated at these equilibrium points. 

set-1 (1, 3, 5) 
set-3 (2,4,6) 

set'2 (9,12,14) 
set-4 (7,10,15) 
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Table 6.3 Eigenvalue data for equilibrium points 1,  3  and 5 

X det eii ei2 Bel ec2 6c3 BC4 
0.00 2.64 1.11 2.38 8.07 -8.17 7.21 -7.31 
0.02 2.62 1.09 2.40 7.98 -8.08 7.25 -7.35 
0.04 2.59 1.07 2.42 7.90 -8.00 7.29 -7.39 
0.06 2.57 1.05 2.45 7.81 -7.91 7.34 -7.44 
0.08 2.54 1.03 2.47 7.72 -7.82 -7.48 7.38 
0.10 2.51 1.01 2.49 7.62 -7.72 7.44 -7.54 
0.12 2.48 0.98 2.52 -7.60 -7.60 7.50 7.50 
0.14 2.45 0.96 2.54 -7.58 -7.58 7.48 7.48 
0.16 2.41 0.94 2.56 -im -7.55 7.45 7.45 
0.18 2.38 0.92 2.58 7.31 -7.41 7.55 -7.65 
0.20 2.34 0.90 2.61 7.20 -7.30 7.60 -7.70 
0.22 2.30 0.88 2.63 7.10 -7.20 7.64 -7.74 
0.24 2.26 0.85 2.65 6.99 -7.09 7.69 -7.79 
0.26 2.22 0.83 2.67 6.88 -6.98 7.73 -7.83 
0.28 2.17 0.81 2.69 6.77 -6.87 7.78 -7.88 
0.30 2.12 0.78 2.72 6.66 -6.76 7.82 -7.92 
0.32 2.07 0.76 2.74 6.54 -6.64 7.87 -7.97 
0.34 2.02 0.73 2.77 6.42 -6.52 7.92 -8.02 
0.36 1.96 0.70 2.79 6.28 -6.38 7.97 -8.07 
0.38 1.90 0.68 2.81 6.15 -6.25 8.02 -8.12 
0.40 1.84 0.65 2.84 6.00 -6.10 8.08 -8.18 
0.42 1.77 0.62 2.87 5.84 -5.94 8.13 -8.23 
0.44 1.69 0.58 2.90 5.67 -5.77 8.19 -8.29 
0.46 1.61 0.55 2.93 5.48 -5.58 8.26 -8.36 
0.48 1.51 0.51 2.96 5.28 -5.38 8.33 -8.43 
0.50 1.41 0.47 2.99 5.04 -5.14 8.40 -8.50 
0.52 1.29 0.43 3.03 4.78 -4.88 8.49 -8.59 
0.54 1.15 0.37 3.08 4.45 -4.55 8.58 -8.68 
0.56 0.98 0.31 3.13 4.04 -4.14 8.70 -8.80 
0.58 0.74 0.23 3.20 3.45 -3.55 8.84 -8.94 
0.60 0.29 0.09 3.32 2.09 -2.19 9.10 -9.20 

det - determinant of the Jacobian of the lossy gradient system 
eii - eigenvalue of the lossy gradient system 
Bci - eigenvalue of the classical system 
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Table 6.4 Eigenvalue data for equilibrium points 9,12 and 14 
A det EN EI2 ^CL EC2 ^034 

0.00 -4.04 -0.95 4.24 10.82 -10.92 -0.05 ± j6.70 
0.02 -4.03 -0.95 4.23 10.82 -10.92 -0.05 ± j6.70 
0.04 -4.02 -0.95 4.23 10.81 -10.91 -0.05 ± j6.69 
0.06 -3.99 -0.94 4.23 10.81 -10.91 -0.05±j6.67 
0.08 -3.97 -0.94 4.22 10.80 -10.90 -0.05±j6.66 
0.10 -3.94 -0.93 4.22 10.79 -10.89 -0.05±j6.63 
0.12 -3.90 -0.93 4.21 10.78 -10.88 -0.05±j6.61 
0.14 -3.86 -0.92 4.20 10.77 -10.87 -0.05±j6.58 
0.16 -3.81 -0.91 4.19 10.75 -10.85 -0.05±j6.55 
0.18 -3.75 -0.90 4.18 10.73 -10.83 -0.05±j6.51 
0.20 -3.69 -0.89 4.17 10.71 -10.81 -0.05±j6.47 
0.22 -3.63 -0.87 4.16 10.69 -10.79 -0.05±j6.43 
0.24 -3.55 -0.86 4.15 10.67 -10.77 -0.05 ± j6.37 
0.26 -3.48 -0.84 4.13 10.65 -10.75 -0.05±j6.32 
0.28 -3.39 -0.82 4.12 10.62 -10.72 -0.05±j6.26 
0.30 -3.30 -0.80 4.10 10.59 -10.69 -0.05±j6.19 
0.32 -3.20 -0.78 4.08 10.56 -10.66 -0.05±j6.11 
0.34 -3.09 -0.76 4.06 10.52 -10.62 -0.05±j6.03 
0.36 -2.98 -0.74 4.04 10.49 -10.59 -0.05±j5.94 
0.38 -2.86 -0.71 4.02 10.45 -10.55 -0.05±j5.84 
0.40 -2.73 -0.68 3.99 10.40 -10.50 -0.05±j5.73 
0.42 -2.59 -0.65 3.97 10.35 -10.45 -0.05±j5.61 
0.44 -2.44 -0.62 3.94 10.30 -10.40 -0.05±j5.47 
0.46 -2.28 -0.58 3.90 10.24 -10.34 -0.05±j5.32 
0.48 -2.10 -0.54 3.87 10.18 -10.28 -0.05±j5.14 
0.50 -1.91 -0.50 3.83 10.11 -10.21 -0.05±j4.94 
0.52 -1.70 -0.45 3.79 10.02 -10.12 -0.05±j4.70 
0.54 -1.47 -0.39 3.74 9.93 -10.03 -0.05±j4.40 
0.56 -1.20 -0.32 3.68 9.82 -9.92 -0.05 ± 4.02 
0.58 -0.86 -0.24 3.60 9.67 -9.77 -0.05±j3.45 
0.60 -0.30 -0.09 3.47 9.41 -9.51 -0.05±j2.09 

det - determinant of the Jacobian of the lossy gradient system 
di - eigenvalue of the lossy gradient system 
Bci - eigenvalue of the classical system 
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Table 6.5 Eigenvalue data for equilibrium points 2,  4  and 6 
A det eil 6/2 eel ec2 ^cS 6C4 

0.00 2.64 1.11 2.38 8.07 -8.17 7.21 -7.31 
0.02 2.65 1.13 2.35 8.14 -8.24 -7.26 7.16 
0.04 2.67 1.15 2.33 8.21 -8.31 7.12 -7.22 
0.06 2.68 1.17 2.30 8.28 -8.38 7.07 -7.17 
0.08 2.69 1.18 2.27 8.35 -8.45 7.03 -7.13 
0.10 2.70 1.20 2.25 8.42 -8.52 6.98 -7.08 
0.12 2.71 1.22 2.22 8.49 -8.59 6.93 -7.03 
0.14 2.71 1.24 2.19 8.56 -8.66 6.89 -6.99 
0.16 2.72 1.26 2.16 8.63 -8.73 6.84 -6.94 
0.18 2.72 1.28 2.13 8.70 -8.80 6.79 -6.89 
0.20 2.72 1.29 2.10 8.77 -8.87 6.73 -6.83 
0.22 2.72 1.31 2.07 8.84 -8.94 6.68 -6.78 
0.24 2.72 1.33 2.04 8.91 -9.01 6.62 -6.72 
0.26 2.71 1.35 2.01 8.98 -9.08 6.57 -6.67 
0.28 2.71 1.37 1.98 9.05 -9.15 6.51 -6.61 
0.30 2.70 1.38 1.95 9.12 -9.22 6.45 -6.55 
0.32 2.69 1.40 1.92 9.19 -9.29 -6.48 6.38 
0.34 2.67 1.42 1.89 9.26 -9.36 6.32 -6.42 
0.36 2.65 1.43 1.86 9.33 -9.43 6.25 -6.35 
0.38 2.63 1.44 1.83 9.40 -9.50 6.18 -6.28 
0.40 2.61 1.80 1.45 9.47 -9.57 6.10 -6.20 
0.42 2.59 1.78 1.45 9.54 -9.64 6.03 -6.13 
0.44 2.56 1.76 1.45 9.62 -9.72 5.94 -6.04 
0.46 2.52 1.75 1.44 9.69 -9.79 5.86 -5.96 
0.48 2.48 1.75 1.42 9.77 -9.87 5.77 -5.87 
0.50 2.44 1.76 1.39 9.85 -9.95 5.67 -5.77 
0.52 2.39 1.77 1.36 9.93 -10.03 5.57 -5.67 
0.54 2.34 1.78 1.31 10.01 -10.11 5.47 -5.57 
0.56 2.28 1.80 1.27 10.09 -10.19 5.35 -5.45 
0.58 2.22 1.83 1.21 10.18 -10.28 5.23 -5.33 
0.60 2.14 1.85 1.16 10.27 -10.37 5.09 -5.19 
0.62 2.06 1.88 1.09 10.36 -10.46 4.94 -5.04 
0.64 1.96 1.91 1.02 10.46 -10.56 4.78 -4.88 
0.66 1.85 1.95 0.95 10.56 -10.66 4.60 -4.70 
0.68 1.72 1.99 0.87 10.67 -10.77 4.39 -4.49 
0.70 1.57 2.03 0.77 10.79 -10.89 4.14 -4.24 
0.72 1.39 2.08 0.67 10.93 -11.03 3.84 -3.94 
0.74 1.15 2.14 0.54 11.08 -11.18 3.44 -3.54 
0.76 0.80 2.21 0.36 11.29 -11.39 2.82 -2.92 

det - determinant of the Jacobian of the lossy gradient system 
eii - eigenvalue of the lossy gradient system 
ed - eigenvalue of the classical system 
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Table 6.6 Eigenvalue data for equilibrium points 7,10 and 15 

X det eii ei2 SQ I ^c34 
0.00 -5.55 3.16 -1.76 13.44 -13.54 -0.05±j6.33 
0.02 -5.54 3.16 -1.76 13.44 -13.54 -0.05±j6.33 
0.04 -5.53 3.15 -1.75 13.43 -13.53 -0.05±j6.32 
0.06 -5.51 3.15 -1.75 13.42 -13.52 -0.05 ± j6.32 
0.08 -5.49 3.14 -1.75 13.41 -13.51 -0.05 ± j6.31 
0.10 -5.47 3.14 -1.74 13.41 -13.51 -0.05±j6.30 
0.12 -5.44 3.14 -1.73 13.40 -13.50 -0.05±j6.29 
0.14 -5.40 3.13 -1.73 13.38 -13.48 -0.05 ± j6.27 
0.16 -5.36 3.12 -1.72 13.37 -13.47 -0.05±j6.25 
0.18 -5.32 3.12 -1.71 13.36 -13.46 -0.05±j6.24 
0.20 -5.27 3.11 -1.69 13.35 -13.45 -0.05±j6.21 
0.22 -5.22 3.10 -1.68 13.33 -13.43 -0.05±j6.19 
0.24 -5.16 3.10 -1.67 13.31 -13.41 -0.05±j6.16 
0.26 -5.10 3.09 -1.65 13.30 -13.40 -0.05±j6.13 
0.28 -5.03 3.08 -1.63 13.28 -13.38 -0.05±j6.10 
0.30 -4.96 3.07 -1.61 13.26 -13.36 -0.05±j6.07 
0.32 -4.88 3.06 -1.59 13.24 -13.34 -0.05±j6.03 
0.34 -4.80 3.05 -1.57 13.22 -13.32 -0.05±j5.99 
0.36 -4.71 3.04 -1.55 13.19 -13.29 -0.05±j5.94 
0.38 -4.62 3.03 -1.52 13.17 -13.27 -0.05 ± j5.89 
0.40 -4.52 3.02 -1.50 13.14 -13.24 -0.05±j5.84 
0.42 -4.42 3.00 -1.47 13.12 -13.22 -0.05±j5.79 
0.44 -4.31 2.99 -1.44 13.09 -13.19 -0.05±j5.73 
0.46 -4.19 2.98 -1.41 13.06 -13.16 -0.05±j5.66 
0.48 -4.06 2.96 -1.37 13.02 -13.12 -0.05±j5.59 
0.50 -3.93 2.95 -1.34 12.99 -13.09 -0.05±j5.51 
0.52 -3.79 2.93 -1.30 12.95 -13.05 -0.05±j5.43 
0.54 -3.65 2.91 -1.25 12.91 -13.01 -0.05 ± j5.34 
0.56 -3.49 2.89 -1.21 12.87 -12.97 -0.05±j5.24 
0.58 -3.33 2.87 -1.16 12.82 -12.92 -0.05±j5.14 
0.60 -3.15 2.85 -1.11 12.77 -12.87 -0.05±j5.02 
0.62 -2.96 2.82 -1.05 12.72 -12.82 -0.05 ± j4.89 
0.64 -2.76 2.80 -0.99 12.66 -12.76 -0.05±j4.74 
0.66 -2.54 2.77 -0.92 12.60 -12.70 -0.05±j4.57 
0.68 -2.31 2.74 -0.84 12.53 -12.63 -0.05 ± j4.38 
0.70 -2.04 2.70 -0.76 12.44 -12.54 -0.05±j4.15 
0.72 -1.74 2.66 -0.66 12.35 -12.45 -0.05 ± j3.86 
0.74 -1.39 2.60 -0.53 12.23 -12.33 -0.05±j3.48 
0.76 -0.92 2.53 -0.36 12.06 -12.16 -0.05±j2.88 

det - determinant of the Jacobian of the lossy gradient system 
en - eigenvalue of the lossy gradient system 
Ccj - eigenvalue of the classical system 
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At a parameter value of X=0.60 equilibrium points from set-1 coalesce 
with equilibrium points from set-2 and at a parameter value of X -0.76 

equilibrium points from set-3 coalesce with equilibrium points from set-4. 
This symmetry can be observed in Figure 6.4 for these four sets. The 

eigenvalues for the sets set-1, set-2, set-3 and set-4 are given in Tables 6.3, 6.4, 
6.5 and 6.6, respectively. 

It can be observed in these tables that the determinant does indeed get 

relatively close to zero and actually becomes zero but this cannot be observed 
because of the discrete set of values from which X is taken. It can also be 

observed that for type-i equilibrium points of the classical system there are 
complex eigenvalues for which the real part is the negative one-half of the 
uniform damping constant. 

6^  ̂Vector Field Plots of the Lossy Gradient System 

As noted earlier, when the parameter X has a value of 1 there are only 

three equilibrium points of interest still remaining. These are the SEP (no. 
13) and two saddle points (no. 8 and no. 11). Equilibrium points 8 and 11 are 
still type-i with respect to the classical system. Vector plots of the lossy 
gradient system (6.13) will not be given for values of X between 0 and 1. The 

stability boundary of the lossy gradient system at a value of X = 0 has already 

been shown in Figure 4.4 from Section 4.3.2. Figures 6.6, 6.7, 6.8 and 6.9 are 
vector field plots of the lossy gradient system for a value of X = 1 with the 

corresponding stable manifolds. Instead of one figure for the vector field plot, 

four are given so that the resolution is better. An observation of the axis in 

each figure will show where each plot fits into the full vector field plot. 
Figure 6.6 represents quadrant 1 of the state-space. It follows that 

Figures 6.7, 6.8 and 6.9 represent quadrants 2, 3 and 4 respectively. It was 

shown in Figure 6.4 that out of the equilibrium points of interest only three 
remain when X= 1. These are equilibrium points 8, 11 and 13 and denote 

these equilibrium points as 0®, 6^^ and 6^^, respectively. The SEP is 

equilibrium point 6^^ = 0® and is shown in Figure 6.6 and has coordinates 
(6.74°, 13.70°). Note that the coordinates are given in (61,62) format. 
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Figure 6.6 Vector field plot for quadrant 1 
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Figure 6.7 Vector field plot for quadrant 2 
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Figure 6.8 Vector field plot for quadrant 3 
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Figure 6.9 Vector field plot for quadrant 4 
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Equilibrium point 0®, which is located at (97.94°, 116.29°) is also shown in 

Figure 6.6. In Figure 6.7 equilibrium point 8^^ is shown and is located at 
coordinates (167.73°, -173.93°). This equilibrium point was originally shown 

in Figure 6.5. In Figure 6.8 equilibrium point 6^^ is shown with coordinates 
(159.43°, -141.10°) and in Figure 6.9 there are no equilibrium points. It can be 
seen that the equilibrium points 0®, 6^^ and 6^^ are all identical points. In 
fact at a value of A = i there are only two kinds of equilibrium points left in the 

system. Stable equilibrium points such as equilibrium point 6^^ and all of 

these equilibrium points are identical. The other kind is unstable 
equilibrium points such as equilibrium points 6®, 6^^ and 0^^ which are type-

1 and are all identical. 

The purpose of presenting these vector field plots is to show the stability 
boundary of the SEP 6^ = 9^^ and also to show the flow in this area around 0®. 

The stable manifolds for the three type-1 equilibrium points 0®, 6^^ and 9^^ 

are seen in the figures. A closer look will reveal that the stable manifolds of 
0® and 0^^ are actually part of the stability boundary for 0® and that the 

stability region is unbounded. It seems that the stable manifolds for 0® and 
0^7 come together in Figures 6.7 and 6.8, however, they are actually distinct 

trajectories and the reason follows from uniqueness of solutions of the 

gradient system. An even closer look will reveal that the dynamics of the 
system around each of the equilibrium points 0®, 0^^ and 0^^ are the same. 

In fact, this observation is part of the definition of identical point. Note that 
the stable manifolds of the equilibrium points 0®, 0^^ and 0^^ all lie in the 

same position with respect to their corresponding equilibrium points (i.e., the 
stable manifolds slope from the lower right to the upper left). 

In the three step cycle of the shadowing method as shown in Section 
5.1 of Chapter 5 the third step of the cycle consists of finding a maximum of 
VpE along a ray. This was found by equating M^g(6) • (9- 9^) = 0. However, 

the lossy gradient system cannot be formed by taking the negative gradient of 

a scalar function as shown in Subsection 6.1.1. Hence, the third step would 
consist of evaluating M^f(9) • (9 - 9^) = 0. In other words, when the vector 

f(9) is orthogonal to the vector (9-9^). As noted in Section 5.3 the manifold 
is denoted by the set of points for which M^g(9) • (9 - 9^) = 0 and for which 

0 e Shigh(0"'). The set Shighi^"') is not well defined in the lossy case since 
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there does not exist a well defined VPE function. However, the manifold 
may be redefined in the following way. The manifold is the set of all 
points 6 such that M^f(6) • (6 - 6^) = 0, Sray(d) n Vr®r&^) ¥=0 and the point B is 

relatively close to This definition is not as precise as the one for the 

lossless case since the phrase relatively close is ambiguous. The manifold 
for the two corresponding equilibrium points 0® and 6^^ is shown in 

Figures 6.6, 6.7, 6.8 and 6.9. In fact, for all points on as shown in these 

figures the corresponding ray intersects a stable manifold so that the 
manifold is actually 

It is observed in these four figures that the manifold is relatively 
close to for ^ = 0" and 0^^ = 0". The reason is the following. It is seen 

that the vector M^f(6) = w(d) firom the vector field plots seem to continually 
point away firom the stable manifold. For example, take any point 0 in the 

plane constructed by the four figures with 6 6^. Form the ray Sray(0); it can 

be seen that by observing vectors in the vicinity of the stable manifold it is 
reasonable to say that there is a point 0^ e Sray(O) such that M^f(6"^) • (&^ -
0®j = 0 and this point 6^ is relatively close to one of the stable manifolds 

shown in these figures. 

In Section 4.8 two problems corresponding to the exit point method 
were presented. Problem 2 was that the resultant equilibrium point was not 
the controlling UEP 0" but instead a low point (i.e., a stable equilibrium 

point) or another unstable equilibrium point on the stability boundary. 

Suppose that the exit point method was applied to the lossy system depicted by 
Figures 6.6, 6.7, 6.8 and 6.9 and that the approximate exit point was detected 
at the point 0®^®" as shown in Figure 6.7. Taking this point as an initial point 
the flow of the system will pass relatively close to 0^^. If there is a minimum 

gradient point detected in the vicinity of 0^^ the it seems reasonable to 

conclude that the resultant equilibrium point would in fact be 0^^. In this 
situation it is 0® that is the controlling UEP. Theoretically the exit point 

method failed in this situation and this failure correlates to problem 2 from 
Section 4.8, but in this situation the resultant equilibrium point is not even on 

the stability boundary. If the shadowing method is applied to this same 
situation it can be observed that the resultant equilibrium would be 6^. 
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Therefore, with transfer conductances included, at least for this 
example, the stable manifolds W^(6^) and are part of the stability 

boundary and it seems that the shadowing technique would work 

satisfactorily when applied. 
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7. APPLICATION OF THE SHADOWING METHOD TO REALISTIC 
POWER SYSTEMS FOR TRANSIENT STABILITY ASSESSMENT 

As described in Section 1 of Chapter 5 the shadowing method is a 
technique from which a finite sequence of points is produced upon the 
appHcation to a power system model. The last point in the sequence should 
be relatively close to the controlling UEP 0". This method was applied to the 

unloaded 3-machine system, which is an unrealistic system, and the results 
where given in Section 5.2 of Chapter 5. In order for this method to be part of 

a practical tool for transient stability assessment it must be able to be applied 
to large-scale realistic power system models. 

In this Chapter results will be given from the application of the 
shadowing method to two large-scale power systems. These power systems 

are the IEEE 50-generator, 145 bus Ontario Hydro system [56] and the 161-
generator, 903 bus Northern States Power system [57]. The machine data 

and real power generation for each system is given in Appendix C. 

7.1 OutUne of Numerical Algorithm 

The steps taken for transient stability assessment using the TEF 
method with the shadowing method incorporated are the following. 

Step 1 

Apply step (i) from Algorithm-EP which consists of detecting the exit 

point of the gradient system. Algorithm-EP was given in Section 4.6 of 
Chapter 4. However, since this shadowing technique is being applied to 

realistic power systems with transfer conductances the lossy gradient system 
(6.13) will need to be substituted for the gradient system. The point 6^^ is 

detected along the projection of the disturbed trajectory and is detected when 
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-[M^f(e"'°)] re"*.e")=o a.i) 

The point 6"^^ that is detected should be relatively close to the approximate 

exit point. It must be made clear that the vector function f from equation (2.8) 
represents the dynamics of the post-disturbance system. The disturbed 
system will have the form 

(7.2) 

0— ID 

with the pre-disturbance point (d^^,0) as the initial condition. In the 

disturbed system equations (7.2) damping is neglected [30]. The vector 
function has the same equation form as f. In most cases such as a three 

phase fault the vector function is simply f with the terms Cij and Dij 
modified. 

Step 2 

Next, apply the shadowing technique as described in Section 5.2 of 
Chapter 5. The vector function z = g will be replaced by M®/. The values 
of T] and p need to be picked heuristically as discussed in Section 5.2. A 

sequence of points f0'"Vt=o with 6^^ initially given will be produced. Use the 

point 6"^^ as an initial guess and solve the nonlinear algebraic vector 
function /"to zero to determine the controlling UEP 0". Note that the first step 

in each cycle of the shadowing method is to solve the differential equations of 
the lossy gradient system. It was first observed in [57] that when the power 

system is large these differential equations seem to be stiff [58]. To overcome 

this obstacle a variable step-size ordinary differential equations solver called 
LSODE [59], [60] is employed. 

Step 3 

Once the controlling UEP is known apply the concept of the energy 
margin as given in Section 2.3 of Chapter 2. This application will consist of 
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evaluating the equation (2.16) for AV which is the energy margin. However, 

there is normally the consideration of the corrected kinetic energy which is 
explained in [27]. 

It is thought that when a disturbance occurs the generators are split 
into two groups which are the critical group of machines and the rest of the 

machines in the system. Let be the set of generator numbers for which 
the generator is in the critical group. Let S'"® be the set of generator numbers 
that are in the rest of the system. 

The term 

"^1=1 

which appears in equation (2.16) and is the kinetic energy term will be 
substituted for with the corrected kinetic energy term shown below 

Where 

Mcr — Mi and Mrs — Mi 
i e S "  t e  S "  

Mcr Mrs 
Mor + Mrs 

njcr — • 

i e S" 

M. 
ând GJfs — 

cr 

i s S "  
MZ 

(Ogg — ®cr " ®rs 
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13, Numerical Results 

In total, there will be nine cases analyzed and the results from the 
analysis will be presented in this section. For each case a disturbance will be 
modeled in the system in the form of a three-phase fault on a major 

transmission line near a bus. The post-disturbance system will be identical 
to the pre-disturbance system except that the transmission line will be 

cleared. Using these two models the steps given in Section 7.1 will be applied. 
For each case the resulting relevant numerical results that will be presented 

are as follows. 

Since this dissertation work focused on the shadowing method the 

most important result is the finite sequence /^0'"Vt=o which is produced. It 
was pointed out that if N is taken large enough then the point 0^^ should be 

relatively close to 0". If the point 0"»riV+2; jg taken as 0" , and {6'"''}^o^ is 

plotted versus i there should not be seen any distinguishable discontinuity 

and it should seem as if converges to 0". This convergence was 

discussed in detail in Section 5.3 of Chapter 5. Since the power system has a 
large number of machines the vector 0"^' will be large and it will be 

cumbersome to present it for 0 <i <N+1. Therefore, only certain states or 

machines in 0^' will be presented. Denote 0y"' as the state or machine in 

the vector 0'"' where i, again, is the cycle of the shadowing method. As 

noted above the data for the sequence could be plotted as 0/"' versus i. 

However, the convergence of {9'^''}i=o 0" can be seen more easily if the plot 

is of of" versus 0/^' for 0 <i <N+1, where 0^% k ^j, is some other state in 
Qmi_ 

A plot of the 1-norm of the vector f( = w( 0^9 versus i for 0 <i <N 

will also be presented. The 1-norm of M^f(6^^) = w(d^^) was first discussed in 

Section 5.1 of Chapter 5. The matrix is positive definite and hence, at the 
UEP 0" the 1-norm of M^f(6^)  is zero. If the 1-norm of M® f(0^t) = w(6^0 —> 0, 

' N 
this indicates the convergence of f0'"Vi=o to an equilibrium point. 

The last point in the sequence 0^^ and the UEP 0" along with its type 

will be presented. Transient stability assessment results from the 
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application of the TEF method will be presented and compared to results 

from the application of time simulation. The Extended Transient Mid-term 
Stability Package (ETMSP V3.0) [61] will be used for time simulation 
purposes. 

7.2.1 50-generator System Results 

In this subsection there will be result presented from the analysis of 
seven cases with regard to the 50-generator system. In five of these cases the 

50-generator system is modified with respect to the generation at the Bruce 
generating station. There are two generators at the Bruce generation station 
and in this dissertation they will be referred to as Bruce-1 and Bruce-2 with 
generator numbers 9 and 25, respectively. Bruce-1 (9) and Bruce-2 (25) are 

connected to the power flow buses 93 and 110, respectively. In the IEEE 50-

generator system the real power generation at each of these two Bruce 

generators is 700 MW. In these five cases the generation is changed at both 
the Bruce generators. The seven cases are listed in Table 7.1 with three-

phase fault location, line dropped to clear the fault and generation at the two 
Bruce generators is shown. 

Table 7.1 Case description for the 50-generator system 

Case Fault Line Bruce-1 Bruce-2 Faulted Bus Description 

number location cleared ( M W )  ( M W )  

1 66 6 6 - 6 9  700 700 Bus 66 is a 100 AVbus connected to bus 7 

through a fixed tap transformer 

2 1 1 - 6  1300 1300 Bus 1 is the 500 kV Bruce bus 

3 7 7 - 6  700 700 Bus 7 is the 500 kV Nanticoke bus 

4 7 7 - 6  900 900 Bus 7 is the 500 kV Nanticoke bus 

5 7 7 - 6  1100 1100 Bus 7 is the 500 kV Nanticoke bus 

6 7 7 - 6  1300 1300 Bus 7 is the 500 kV Nanticoke bus 

7 7 7 - 6  1500 1500 Bus 7 is the 500 kV Nanticoke bus 
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The exit point method, which was described in Section 4.6 of Chapter 4, 

failed when applied to each of these seven cases. Table 7.2 gives relevant 

information on the nature of the failure. As noted earlier, the LSODE routine 
is a variable step-size solver and given a certain time step it will internally 
solve the ODEs at intermediate time steps and will end at a time equal to or 
less than the original time step given. The step size given in all seven cases 
was 0.005 seconds. The LSODE uses a method based on backward differential 

formulas [60]. At each internal step the order of the method for the 

approximate solution may change and the average order of the solution 
method is also shown in Table 7.2 

Table 7.2 Results from the application of the exit point method to the 

seven cases 

Case Average order Description of the Failure 

number of the method 

1 4 Minimum gradient point found; problem with convergence 

2 5 Minimum gradient point found; convergence was to the SEP 

3 4 Minimum gradient point found; convergence was to the SEP 

4 4 Minimum gradient point found; convergence was to the SEP 

5 5 Lossy gradient system trajectory converged to the SEP 

6 4 Lossy gradient system trajectory converged to the SEP 

7 5 Lossy gradient system trajectory converged to the SEP 

When the shadowing method is applied to these seven cases the 
parameters that were described in Section 5.2 of Chapter 5 are taken as ij = 

0.01 and P = 2.0 for each case. The time step given for each cycle (i.e., (i as 

shown in Section 5.2 of Chapter 5) is 0.05 seconds. It has been generally 
observed and holds so for these cases that the LSODE solver will solve the 
ODEs at three intermediate steps with the resultant time less than the 

original time step given or in this case less than 0.05 seconds. Therefore, the 

LSODE solver will not necessarily integrate up to the time of 0.05 seconds. 
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Table 7.3 shows the number of cycles needed to meet the tolerance of 
the l-norm of M^f(Ô'^'^) = w(6"^^) to be less than p = 2.0 for each of the seven 

cases. This value of p was chosen so that the point 6^^ is relatively close to 
0". Figures 7.1 and 7.2 show the plot of the l-norm of w(6'^^) versus the 

number of cycles for each of the cases 1 through 7. Because cases 3, 4, 5, 6 
and 7 are similar since the fault location and line cleared are identical there 
respective plots are all shown in Figure 7.2. These seven plots clearly show 

the convergence of to some equilibrium point. 

Table 7.3 Number of cycles for each case for the 50-generator system 

Case number Number of cycles 

1 62 
2 48 

3 48 
4 63 
5 61 

6 55 
7 57 

Tables 7.4, 7.5 and 7.6 hold the following information for each case. 

The internal generator number and the power flow bus number to which it is 
connected is given. The vector angle 6'^^ is shown. This vector point 6^^ is 

the last point in the sequence which is produced by the application of the 

shadowing method. Finally, the controlling UEP is shown. The vector angle 
QmN and 0" are positioned side by side for comparison of corresponding 

angles. It can be seen since p was chosen relatively small the corresponding 

angles in these two angle vectors are relatively close to each other. In all 
seven cases the resultant UEP was a type-i equilibrium point. 
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Table 7.4 UEP data for Case 1, Case 2 and Case 3 
Case 1 Case 2 Case 3 

Gen. Bus ffnN UEP ffnN UEP ffnN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) (degrees) (degrees) 

1 60 72.21 86.18 79.08 100.27 43.41 54.84 
2 67 132.29 131.37 118.82 121.21 84.69 86.80 
3 79 112.49 115.49 119.95 127.41 73.40 79.89 
4 80 108.72 115.89 116.50 127.61 70.37 80.35 
5 82 119.07 130.56 108.34 120.31 64.13 76.34 
6 89 146.87 144.44 155.49 155.66 106.61 109.14 
7 90 72.22 107.18 86.42 121.22 50.72 73.76 
8 91 129.11 132.18 121.96 127.18 76.29 82.90 
9 93 129.35 127.74 161.89 162.39 87.59 89.93 

10 94 84.90 96.07 92.20 110.32 55.00 64.44 
11 95 75.76 90.64 81.18 105.31 56.30 65.90 
12 96 130.53 130.73 133.84 135.34 84.24 90.73 
13 97 135.83 134.89 123.40 126.69 90.25 93.01 
14 98 152.06 149.19 160.79 160.43 112.44 114.74 
15 99 137.79 135.40 161.03 160.39 96.70 98.70 
16 100 137.89 134.73 145.80 145.40 96.09 98.82 
17 101 131.79 129.96 137.29 138.07 92.12 94.25 
18 102 56.32 56.34 54.99 55.17 44.55 44.85 
19 103 134.45 131.11 142.22 141.73 91.87 94.95 
20 104 155.31 153.58 158.55 159.69 183.28 185.43 
21 105 139.76 138.37 145.10 146.18 99.37 101.88 
22 106 140.06 138.61 145.26 146.28 99.53 101.95 
23 108 129.83 130.60 103.49 106.77 61.01 63.60 
24 109 110.96 118.06 99.18 107.83 54.47 63.37 
25 110 129.34 127.67 162.92 163.35 88.27 90.58 
26 111 150.47 148.76 149.30 150.67 154.88 157.41 
27 112 131.23 129.41 136.71 137.49 91.51 93.63 
28 115 -3.23 -3.06 -3.44 -3.55 -2.88 -2.99 
29 116 5.96 6.14 5.73 5.65 3.25 3.23 
30 117 16.71 16.89 16.23 16.19 11.00 11.07 
31 118 9.22 9.38 9.07 9.01 5.35 5.38 
32 119 -39.92 -40.62 -28.82 -28.82 -36.12 -35.72 
33 121 120.09 121.49 75.93 79.73 36.93 39.01 
34 122 122.57 122.25 95.94 99.01 61.31 63.18 
35 124 123.65 122.90 107.27 109.84 72.05 74.14 
36 128 -8.76 -9.76 1.93 2.41 -11.00 -10.31 
37 130 -33.35 -33.76 -25.75 -25.77 -31.00 -30.75 
38 131 -9.30 -9.46 -5.01 -5.04 -8.36 -8.23 
39 132 27.53 27.51 27.51 27.85 19.38 19.81 
40 134 -10.66 -10.59 -12.67 -12.93 -6.65 -6.95 
41 135 27.90 28.58 27.31 27.71 31.17 31.31 
42 137 -99.03 -98.72 -99.09 -99.79 -86.83 -87.62 
43 140 -37.42 -37.34 -40.21 -40.70 -30.41 -31.06 
44 142 1.98 2.03 3.28 3.19 2.71 2.68 
45 143 10.22 10.31 10.89 10.85 8.27 8.32 
46 144 2.51 2.47 4.82 4.72 4.04 4.03 
47 145 11.09 11.19 4.35 4.05 15.75 15.33 
48 136 2.56 2.90 1.61 1.57 6.49 6.30 
49 141 -4.09 -3.94 -4.42 -4.56 -1.92 -2.09 
50 139 -16.51 -16.45 -19.98 -20.40 -11.07 -11.67 
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Table 7.5 UEP data for Case 4, Case 5 and Case 6 
Case 4 Case 5 Case 6 

Gen. Bus ffnN UEP gtiN UEP fftiN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) (degrees) (degrees) 

1 60 59.63 75.96 64.03 80.93 62.37 79.23 
2 67 106.08 110.81 111.74 114.00 107.70 109.57 
3 79 95.67 104.79 102,13 109.62 100.03 107.48 
4 80 91.75 105.06 97.33 109.82 94.66 107.59 
5 82 88.39 101.19 94.30 105.46 91.16 102.39 
6 89 131.35 135.20 138.12 139.38 135.63 136.81 
7 90 63.71 96.73 66.64 101.82 65.28 99.97 
8 91 100.81 108.10 107.35 112.34 104.44 109.39 
9 93 118.08 122.12 131.11 132.69 134.78 136.18 

10 94 71.59 85.77 76.48 90.77 74.96 89.07 
11 95 66.93 81.91 69.96 86.26 68.95 84.95 
12 96 109.53 116.37 116.02 120.49 112.94 117.73 
13 97 112.16 116.93 117.71 119.95 113.67 115.51 
14 98 137.23 140.74 143.87 144.75 141.20 142.01 
15 99 124.01 127.58 133.88 134.82 134.41 135.14 
16 100 121.15 124.87 128.17 129.23 125.79 126.79 
17 101 116.13 119.95 122.64 123.98 120.01 121.20 
18 102 49.92 50.42 52.15 52.29 52.59 52.74 
19 103 117.16 120.99 124.28 125.43 121.96 123.08 
20 104 189.90 191.88 183.13 184.39 173.21 174.81 
21 105 123.40 127.53 129.78 131.49 127.13 128.70 
22 106 123.55 127.60 129.96 131.59 127.32 128.81 
23 108 82.42 87.56 89.27 92.05 86.53 88.85 
24 109 78.65 88.27 85.07 92.77 82.23 89.93 
25 110 119.18 123.20 132.64 134.19 136.74 138.10 
26 111 166.70 169.57 163.02 164.56 154.35 156.05 
27 112 115.52 119.33 122.04 123.39 119.43 120.62 
28 115 -3.42 -3.67 -3.29 -3.42 -2.75 -2.86 
29 116 4.22 4.10 5.00 4.89 5.75 5.67 
30 117 13.37 13.39 14.70 14.63 15.58 15.54 
31 118 6.98 6.94 8.00 7.92 8.79 8.73 
32 119 -32.14 -31.61 -30.53 -30.34 -29.93 -29.74 
33 121 56.28 61.34 62.95 65.75 60.00 62.21 
34 122 80.72 85.59 86.82 89.31 83.28 85.20 
35 124 93.28 98.11 99.30 101.65 95.52 97.44 
36 128 -4.25 -3.03 -1.61 -1.05 -1.29 -0.80 
37 130 -28.27 -27.95 -26.99 -26.90 -26.34 -26.24 
38 131 -6.70 -6.56 -5.80 -5.77 -5.19 -5.16 
39 132 23.90 24.68 25.54 25.88 25.57 25.86 
40 134 -9.64 -10.16 -10.83 -11.11 -11.09 -11.35 
41 135 28.78 28.81 28.18 28.52 28.57 28.94 
42 137 -94.27 -95.77 -95.97 -96.68 -94.61 -95.26 
43 140 -35.66 -36.65 -37.44 -37.98 -37.43 -37.95 
44 142 2.84 2.74 3.19 3.11 3.71 3.65 
45 143 9.51 9.52 10.25 10.21 10.82 10.80 
46 144 4.30 4.22 4.69 4.62 5.22 5.16 
47 145 10.75 10.10 7.96 7.62 6.26 5.93 
48 136 3.66 3.27 2.89 2.81 3.24 3.19 
49 141 -3.41 -3.74 -3.70 -3.86 -3.33 -3.47 
50 139 -15.52 -16.39 -17.34 -17.83 -17.78 -18.25 
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Table 7.6 UEP data for Case 7 
Case 7 

Generator Power flow bus fftiN UEP 
number (degrees) (degrees) 

1 60 57.91 74.01 
2 67 99.75 101.86 
3 79 93.77 101.54 
4 80 87.90 101.56 
5 82 84.08 95.85 
6 89 128.65 130.46 
7 90 62.52 94.37 
8 91 97.13 102.90 
9 93 133.77 135.65 

10 94 70.44 83.82 
11 95 66.15 80.74 
12 96 105.10 111.33 
13 97 105.56 107.80 
14 98 134.01 135.49 
15 99 130.40 131.61 
16 100 118.84 120.62 
17 101 113.06 114.74 
18 102 52.04 52.38 
19 103 115.01 117.03 
20 104 160.62 162.82 
21 105 120.15 122.24 
22 lOfl 120.35 122.35 
23 108 79.96 82.47 
24 109 75.35 83.70 
25 110 136.12 137.97 
26 111 142.57 144.81 
27 112 112.67 114.34 
28 115 -2.08 -2.17 
29 116 6.37 6.35 
30 117 16.05 16.11 
31 118 9.32 9.34 
32 119 -29.85 -29.55 
33 121 53.65 55.88 
34 122 76.26 78.24 
35 124 87.93 90.05 
36 128 -1.95 -1.35 
37 130 -25.99 -25.81 
38 131 -4.73 -4.65 
39 132 24.87 25.25 
40 134 -10.92 -11.23 
41 135 29.46 29.76 
42 137 -91.84 -92.64 
43 140 -36.51 -37.15 
44 142 4.29 4.25 
45 143 11.24 11.27 
46 144 5.80 5.76 
47 145 4.96 4.56 
48 136 4.13 4.01 
49 141 -2.67 -2.82 
50 139 -17.57 -18.14 
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In order to show two states in the sequence {d'^^}i=o Figures 7.3, 7.4 and 
7.5 are shown for cases 1 through 7. For each case in the corresponding 
figure the states versus is plotted for 0 <i <N+1, with Qm(N+i) - qu The 

numbers 20 and 25 are the generator numbers for which 20 corresponds to a 
machine connected to the Nanticoke bus (power flow bus number 104) and 25 

corresponds to generator Bruce-2 (power flow bus number 110). Each plot 
starts at the exit point 0'"® and ends at the UEP These plots along 

with the plots from Figures 7.1 and 7.2 clearly show the convergence of each 

of the seven sequences {9 }i=o to the respective 6". Again, since Cases 3, 4, 5, 

6 and 7 have some similarities they are put in the same figure. 

200 

S 
fe 180 
S 

S 160 
CO 

0 140 

1  ̂ 120 

I 
100 

20 40 60 80 100 120 140 160 
Generator 25, bus 110 (degrees) 

1 m?T3 

1 

Exitp 

Ushir * 

oint • / 

y % 

i 
1 ]ase 1 

Figure 7.3 Illustration of shadowing for Case 1 
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Figure 7.4 Illustration of shadowing for Case 2 

Transient stability assessment results are shown in Table 7.7. Critical 

clearing times obtained from ETMSP are given. Results from the application 
of TEF method are given. They are the potential energy margin AVpE, the 

corrected kinetic energy VKE-com the normalized energy margin AVN = (AVPE 

• YKE-CORR)IYKE-corr and a description of the criterion on which the corrected 
kinetic energy is evaluated is shown in Table 7.8. The potential energy 
margin AVPE is taken from equation (2.16) from Chapter 2. The critical 

clearing times obtained from the application of the TEF method with the 
shadowing technique incorporated for these seven cases seem to match well 

with time simulation. 
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Table 7.7 Transient stability assessment results for Cases 1 through 7 

CCT CCT 

Case ETMSP TEF AVpE ^KE-corr ^Vn 

number (seconds) (seconds) (pu) (pu) (pu) 

1 0.171 0.184 21.66 21.61 0.002 

2 0.150 0.154 7.92 7.94 -0.003 

3 0.115 0.111 6.92 6.88 0.005 

4 0.115 0.127 5.76 8.80 -0.005 

5 0.010 0.116 7.28 7.32 -0.005 

6 0.080 0.082 4.70 4.70a 0.000 

7 0.050 0.056 1.715 1.717 -0.001 
CCT - critical clearing time 
a - represents the total kinetic energy 
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Table 7.8 Criterion for the evaluation of the corrected kinetic energy for 
the 50-generator system 

Case Criterion 

number 

1 Pick generator 20 and 26 to be in the critical group; they both have considerable 

relative speed at clearing since the fault is electrically close. 

2 Pick generators that have an UEP angle above 130 degrees. All of these machines 

have about the same relative speed at clearing. 

3 Same group and reason as used in Case 1. 

4 Same group and reason as used in Case 1. 

5 Same group and reason as used in Case 1. 

6 The total kinetic energy was used 

7 Same group and reason as used in Case 1. 

7.2.2 161-generator System Results 

In this subsection there are two cases (Cases 8 and 9) from the 161-
generator system that are analyzed and these two cases are described in 

Table 7.9 

The format for data presentation in this subsection follows similarly 
from the data presentation given in Subsection 7.2.1 for the 50-generator 

system . 

Table 7.9 Case description for the 161-generator system 

Case Fault Line 

number location cleared Faulted Bus Description 

8 1662 1662-1709 Bus 1662 is a 345 ftV bus 

9 1655 1655-1739 Bus 1655 is a 345 ft V bus 
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When the shadowing method is applied to these two cases the 
parameters are taken as rj = 0.01 and j8 = 0.5 for each case. The reason fi is 
smaller for the 161-generator system than in the 50-generator case (/J = 2.0) is 

because there are over 3 times as many machines. Hence, in order to have a 
relatively small difference in the corresponding angles in the angle vectors 
QmN and 6" the value of p must be taken smaller. The time step given for 

each cycle is 0.05 seconds. 

Table 7.10 shows the number of cycles needed to meet the tolerance of 
the 1-norm of = w(d'^0 to be less than /J = 0.5 for each of the two 

cases. It can be seen that the number of cycles needed to meet the tolerance 
is much larger than those for the 50-generator system; again this is due to 

the fact that this is a larger system. Figure 7.6 contains the plot of the 1-
norm of w(6^0 versus the number of cycles for both Cases 8 and 9. These two 

plots clearly show the convergence of to some equilibrium point. 
Similar to Tables 7.4, 7.5 and 7.6, Table 7.11 holds the point 9^^ and the 

controlling UEP. Again, it can be noticed that these angles are relatively 
close to each other due to the relatively small value of p. The UEP was type-J 

in both cases. 

Generators 38 (power flow bus 1680) and 39 (power flow bus 1681) are 

taken from the sequence /^0'"Vi=o and plotted against one another in Figure 

7.7 for Case 8 and in Figure 7.8 for Case 9. Generator 39 is a Sherco 

generator which is connected to the 345 kV bus 1662 (faulted) through a fixed 
tap transformer. Generator 38 is a Monticello generator which is connected 
to the 345 kV bus 1655 (faulted) through a fixed tap transformer. These plots 

along with the plots firom Figure 7.5 clearly show the convergence of each of 

the two sequences /^0'"V{=o to the respective 0". The plots in Figures 7.7 and 

7.8 appear to be slightly different than the plots in Figures 7.3, 7.4 and 7.5 

since the plot seems to intersect itself. The reason is the following. If the 

points in the sequence are connected then this will appear as a i-

dimensional curve in space. What is actually shown in both Figures 
7.7 and 7.8 is the projection of this i-dimensional curve into the plane 

spanned by the axes corresponding to machines 38 and 39. Therefore, it may 

appear as if this curve intersects itself but in space it is not. It is clear 
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Table 7.10 Number of cycles for each case for the 161-generator system 

Case number Number of cycles 

8 218 
9 293 

100 150 200 250 300 
Cycles 

Figure 7.6 1-norm of w versus the number of cycles for Cases 8 and 9 
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Table 7.11 UEP data for Case 8 Case 9 
Case 8 Case 9 

Gen. Bus gmN UEP ffnN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) 

1 39 64.11 63.41 72.50 69.74 
2 53 62.75 61.96 72.11 69.05 
3 55 60.22 59.43 69.66 66.58 
4 283 64.18 63.35 74.04 70.80 
5 284 67.60 66.85 76.59 73.63 
6 287 51.91 51.11 61.18 58.10 
7 288 50.17 49.40 59.34 56.32 
8 415 112.86 111.48 128.42 123.54 
9 458 117.89 116.57 133.91 128.97 

10 459 117.89 116.57 133.91 128.97 
11 460 125.56 124.23 141.53 136.60 
12 542 100.12 98.86 114.77 110.06 
13 543 100.12 98.86 114.77 110.06 
14 545 81.67 80.46 95.79 91.25 
15 547 95.05 93.87 108.98 104.47 
16 556 98.99 97.77 113.58 108.93 
17 557 98.99 97.77 113.58 108.93 
18 575 77.06 75.91 90.09 85.80 
19 603 115.38 114.10 131.21 126.32 
20 607 115.70 114.42 131.54 126.64 
21 611 112.77 111.49 128.55 123.67 
22 618 83.20 82.34 93.42 90.09 
23 748 116.87 115.54 kce 133.20 128.21 
24 749 120.62 119.28 kce 136.96 131.95 
25 815 115.39 114.06 kce 131.82 126.81 
26 845 112.19 110.82 kce 128.41 123.39 
27 912 96.21 94.89 kce 113.51 108.26 
28 1365 86.36 84.91 kce 108.19 102.04 
29 1474 106.95 105.50 kce 128.69 122.65 
30 1475 115.99 114.53 kce 137,70 131.67 
31 1476 98.19 96.70 kce 119.98 113.84 
32 1477 98.20 96.70 kce 119.98 113.85 
33 1521 120.75 119.42 kce 137.03 132.05 
34 1522 114.76 113.43 kce 131.05 126.07 
35 1523 123.47 122.13 kce 139.74 134.75 
36 1618 89.34 87.96 kce 108.53 102.44 
37 1619 89.16 87.78 kce 108.34 102.25 
38 1680 103.55 102.10 kce 129.84 123.45 
39 1681 101.16 99.71 kce 126.13 119.76 
40 1682 101.23 99.79 kce 126.21 119.84 
41 1683 99.02 97.59 kce 123.93 117.59 
42 1780 89.10 87.70 kce 110.75 104.52 
43 1781 70.27 68.83 kce 89.40 83.33 
44 1782 81.93 80.48 kce 101.54 95.37 
45 1784 85.82 84.36 kce 105.60 99.39 
46 1785 78.43 76.98 kce 99.28 93.08 
47 1786 80.61 79.18 kce 101.56 95.36 
48 1787 84.86 83.38 kce 106.43 100.11 
49 1788 82.11 80.68 kce 103.54 97.31 
50 1831 76.76 75.26 kce 97.61 91.43 
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Table 7.11 Continued 
Case 8 Case 9 

Gen. Bus fftiN UEP gmN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) 

51 2016 58.43 57.26 kce 72.40 67.67 
52 2057 60.00 59.02 kce 72.66 68.56 
53 2058 35.04 34.37 43.28 40.62 
54 2085 40.21 39.78 45.33 43.66 
55 2122 61.65 60.63 kce 75.19 70.84 
56 2140 64.10 62.86 kce 80.46 75.24 
57 2142 75.12 73.89 kce 91.99 86.67 
58 2343 64.58 63.64 76.19 72.40 
59 2446 51.10 50.42 59.61 56.85 
60 2454 37.28 36.63 45.13 42.57 
61 2591 57.98 57.22 67.17 64.16 
62 2605 47.23 46.71 53.53 51.48 
63 2710 39.41 38.96 44.90 43.13 
64 2901 34.42 34.00 39.38 37.77 
65 3001 154.47 154.09 kce 164.74 161.98 
66 3002 154.77 154.40 kce 165.03 162.28 
67 3003 155.22 154.67 kce 165.56 162.62 
68 3004 156.05 155.50 kce 166.37 163.44 
69 3005 156.53 155.97 kce 166.84 163.90 
70 3006 157.15 156.57 kce 167.43 164.49 
71 3010 166.95 166.37 kce 176.59 173.80 
72 3030 145.44 144.84 kce 155.12 152.31 
73 3032 142.60 142.02 kce 152.35 149.55 
74 3588 197.86 196.55 kce 203.10 200.73 
75 3590 208.28 207.44 kce 213.61 211.63 
76 3591 175.33 174.31 kce 183.45 180.63 
77 3595 195.04 194.01 kce 199.06 197.20 
78 3596 198.82 197.50 kce 202.32 200.34 
79 3598 214.34 212.05 kce 216.19 214.04 
80 3600 184.38 183.55 kce 190.54 188.35 
81 4015 48.01 47.63 52.67 51.16 
82 4850 26.81 26.61 29.21 28.44 
83 4852 19.18 18.97 21.63 20.85 
84 4885 20.16 20.07 21.08 20.78 
85 4888 8.64 8.57 9.26 9.05 
86 4889 10.90 10.86 11.15 11.05 
87 4890 9.56 9.42 11.27 10.72 
88 4891 12.19 12.03 13.96 13.39 
89 4892 10.33 10.15 12.46 11.78 
90 4894 -12.22 -12.16 -13.33 -13.02 
91 4903 24.88 24.68 27.15 26.42 
92 4905 26.35 26.18 28.36 27.72 
93 4949 30.50 30.30 32.88 32.12 
94 4963 48.18 47.82 52.05 50.76 
95 4964 23.06 22.83 25.69 24.86 
96 4966 31.45 30.90 38.75 36.60 
97 4970 24.77 24.62 26.55 25.97 
98 4971 23.68 23.51 25.51 24.91 
99 4972 22.29 22.19 23.38 23.03 

100 4986 25.52 25.32 27.79 27.06 
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Table 7.11 Continued 
Case 8 Case 9 

Gen. Bus fftiN UEP ffnN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) 
101 4987 24.92 24.73 Zl.Ql 26.38 
102 4993 26.77 26.60 28.79 28.14 
103 4994 38.00 37.70 41.79 40.64 
104 5007 29.77 29.44 33.64 32.38 
105 5870 -2.15 -2.14 -2.68 -2.55 
106 5871 -11.18 -11.15 -11.98 -11.77 
107 5872 3.59 3.55 3.78 3.69 
108 5873 -8.06 -8.26 -6.35 -6.96 
109 5874 14.16 14.01 15.70 15.17 
110 5875 7.83 7.69 9.24 8.75 
111 5876 9.23 8.99 11.71 10.88 
112 5877 9.17 9.01 10.67 10.15 
113 5878 -7.26 -7.26 -7.60 -7.53 
114 5879 10.67 10.58 11.45 11.16 
115 5880 12.86 12.75 13.87 13.51 
116 5882 17.16 16.93 19.46 18.68 
117 5883 13.44 13.29 14.97 14.45 
118 5884 11.68 11.58 12.69 12.35 
119 5888 14.27 14.05 16.55 15.79 
120 5891 12.49 12.30 14.54 13.86 
121 5892 14.93 14.83 15.97 15.61 
122 5960 22.69 22.52 24.41 23.83 
123 5961 7.82 7.51 11.37 10.21 
124 5970 11.18 11.02 12.82 12.26 
125 5971 24.09 23.98 25.04 24.71 
126 5977 41.32 40.90 46.10 44.53 
127 5981 25.72 25.56 27.31 26.76 
128 5984 18.50 18.44 18.89 18.73 
129 5985 12.78 12.75 12.76 12.73 
130 5986 24.50 24.45 24.67 24.58 
131 5987 19.48 19.55 18.31 18.64 
132 5988 15.00 15.09 13.57 13.98 
133 5989 -1.93 -1.86 -3.13 -2.79 
134 6534 -6.88 -6.80 -7.60 -7.36 
135 6536 -32.38 -32.16 -34.39 -33.71 
136 6552 -20.29 -20.04 -22.40 -21.67 
137 6609 -9.45 -8.32 -14.01 -11.92 
138 6900 24.18 24.23 23.33 23.58 
139 6935 7.10 7.13 6.74 6.84 
140 6936 18.56 18.58 18.18 18.29 
141 6937 13.02 13.02 13.01 13.00 
142 6939 3.84 3.90 3.14 3.36 
143 6940 13.27 13.32 12.41 12.66 
144 6941 6.83 6.76 7.57 7.33 
145 6942 3.02 3.05 2.77 2.85 
146 6944 -34.97 -34.86 -36.24 -35.83 
147 6945 13.61 13.70 12.32 12.71 
148 6946 2.56 2.66 1.12 1.55 
149 6947 -4.73 -4.65 -6.09 -5.69 
150 6948 -27.17 -27.04 -28.96 -28.42 
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Table 7.11 Continued 
Case 8 Case 9 

Gen. Bus ffiiN UEP ffnN UEP 
num. num. (degrees) (degrees) (degrees) (degrees) 
151 6949 -11.87 -11.76 -13.44 -12.96 
152 6950 -8.44 -8.34 -9.85 -9.42 
153 6951 -14.12 -14.01 -15.38 -14.98 
154 6952 8.34 8.37 7.76 7.93 
155 6953 -57.00 -56.77 -59.50 -58.69 
156 6954 -62.37 -62.15 -64.60 -63.87 
157 6955 -80.22 -80.00 -82.45 -81.72 
158 6956 -42.16 -41.95 -44.18 -43.50 
159 6502 -10.94 -10.68 -13.12 -12.36 
160 6938 1.77 1.83 1.09 1.30 
161 6943 -25.70 -25.58 -26.93 -26.52 

S 

I 
0 
S 
tH 

4 
00 
OQ 

1 
O 

200 

180 

160 

140 

120 

100 

1 
Case 8 

UEP • 
Exit point • 

./ 

J 

80 100 120 140 160 180 
Generator 39, bus 1681 (degrees) 

200 

Figure 7.7 Illustration of shadowing for Case 8 
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Figure 7.8 Illustration of shadowing for Case 9 

that part of each graph in Figures 7.7 and 7.8 seem quite linear. However, 

there is no immediate reason why this is of any significance since this is 
again the projection onto a plane 

Transient stability assessment results are shown in Table 7.11. In 

Case 8 the corrected kinetic energy was based on the machines that have a 
kce flag next to them in Table 7.11. These machines picked were based on 
two criteria. The machine had a relatively high clearing speed and the 

machine had a relatively large angle at the UEP. Therefore, based on the 
concept of the corrected kinetic energy the system must absorb this relatively 

large kinetic energy due to the relatively high clearing speeds. Since the 
system is being cleared near the critical clearing time the trajectory of the 

system should pass close to the UEP. Hence, the machines that have a 
relatively large angle at the UEP will generally swing near this UEP angle 

and thus pick up kinetic energy which then needs to be absorbed by the 
system. The critical clearing time is given in Table 7.12 and compares quite 
well with time simulation. 
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An analysis of Case 9 was performed in [57] in which a modal 
transient energy function was introduced. The UEP determined in [57] is 

identical to the UEP obtained by the shadowing method (this UEP is shown in 

Table 7.11). The transient stability assessment results from [57] for this case 
will be repeated in Table 7.12. In [57] the potential energy margin was 

replaced by a partial potential energy margin and the corrected kinetic 
energy was replaced by a partial kinetic energy margin. However, the 

results will be put under the heading of potential energy margin and 
corrected kinetic energy. The critical clearing time for Case 9 is given in 

Table 7.12 and compares quite well with time simulation. 

Table 7.12 Transient stability assessment results for Case 8 and Case 9 

CCT CCT 

Case ETMSP TEF AVpE ^KE-corr àVn 

number (seconds) (seconds) (pu) (pu) (pu) 

8 0.111 0.107 4.25 4.23 0.005 

9 0.1175 0.1178 9.43 9.34 0.055 

OCT - Critical clearing time 

7.3 Concluding Remarks 

The results from the analysis of nine cases from two different large-

scale power systems were given in this chapter. Seven of these cases involved 

the 50-generator system and two involved the 161-generator system. In all 
seven cases involving the 50-generator system the exit point method failed. 

On of the problems was an incomplete convergence to an equilibrium point. 
The other six were failures due do to the method converging to the SEP. This 
problem was first discussed in Chapter 4. This specific problem and others 

were the motivation for presenting the shadowing method. This method not 

only avoids these problems it actually is set-up to shadow the stable manifold 

of the controlling UEP which is thought to be part of the stability boundary of 

the lossy gradient system. 
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Transient stability assessment results that were produced from the 
application of the TEF method with the shadowing method incorporated for 

the given nine cases. The assessment results compared favorably with time 

simulation. However, the main result from this chapter and the focus of this 
dissertation is the fact that the sequence of points produced by the shadowing 

technique seemed to converge to the controlling UEP. 
These two types of results given above should not be surprising at all 

for the following reasons. 

• The use of the controlling UEP in the energy margin calculation 
was given mathematical foundation in Section 3.1.3 of Chapter 3. 

This was based on the fact that the stability boundary is composed 
solely of the corresponding stable manifolds. 

• The connection between the swing system and the gradient system 
lies with the controlling UEP as shown in Section 3.3 of Chapter 3. 
The controlling UEP is on the stability boundary of both of these 
systems in the form of (6^,0) and 6". 

• The shadowing method utilizes the stable manifold (part of the 

stability boundary) of the gradient system and it was rigorously 
shown in Section 5.2 of Chapter 5 that under reasonable 

circumstances the resultant sequence produced by the 
application of the shadowing method converges to the controlling 
UEP. 

• Doubts were raised in Chapter 6 on the validity that the stability 
boundary is composed solely of the corresponding stable manifolds 

when transfer conductances were introduced into the system. An 
example was given in the form of vector field plots that validated 
this conclusion and it was observed that the shadowing method 

would work satisfactorily. 

• Results from this chapter validate all of these concepts and ideas. 
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In all nine cases the value of P, which is used as a stopping criteria, 

was chosen relatively small. This value was picked relatively small to show 

that the sequence does indeed converge to the controlling UEP. However, in a 

practical implementation, of this method a relatively small value of would not 
be computationally feasible. It was first discussed in Remark 2 of Section 5.4 

of Chapter 5 that an optimal sequence needs to be utilized with both ti 

and N chosen correctly. This, however, is left for future work. 

It can be noticed, however, from Figures 7.1, 7.2 and 7.6 of the 1-norm 
of w(6^^) versus the number of cycles that the 1-norm of w(6^^) seems to drop 

rapidly and then level off. It would seem reasonable that the application of 
the shadowing method could be stopped at the point when the 1-norm of 
w(6^^) starts to level off and that the resulting initial guess would be in the 

domain of convergence of the controlling UEP. 



www.manaraa.com

175 

8. CONCLUSIONS 

The conclusions to this dissertation work are presented with respect to 
relevant chapters. 

The swing system and the associated gradient system were presented 
in Chapter 3. The main idea presented in this chapter is that the stability 

boundary of the swing system, which was in the center of inertia reference 
frame, was composed solely of the corresponding stable manifolds. In order 

to do show this a valid energy function needs to exist. It was shown that 
there indeed exist a valid energy function in the COI reference frame. The 
notion that the stability boundary was composed solely of the corresponding 

stable manifolds led to the mathematical concept of the energy margin. 

The exit point method was presented in Chapter 4. The heuristic 

foundation for this method was explained and examples given. It was 
pointed out that two basic problems can occur while applying the exit point 

method to detect the controlling UEP. These two problems were clearly 
shown in the two examples given in Chapter 4 and are listed below. 

Problem 1 There may be no detection of the minimum gradient point 

since there is no analytical justification for the existence of 
this point. 

Problem 2 The resultant equilibrium point may not be the controlling 
UEP. In fact it has been observed that this point can be an 

SEP, another equilibrium point on the stability boundary of 

the gradient system or even as shown in Subsection 6.2.3 an 
UEP which is not even on the stability boundary of the 
gradient system. 

In Chapter 5 a new method, referred to as the shadowing method, was 

presented. It was shown that when this shadowing method was applied to 
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the examples from Chapter 4, for which the exit point method failed, the 
controlling UEP was correctly detected. A soiind analytical foundation for 
this shadowing method was given. Under the reasonable assumption that 

the controlling UEP is type-i it was shown that an infinite sequence of time 
steps exist such that when the shadowing method is applied with the Euler 

integration scheme the resultant sequence that is produced converges to the 
controlling UEP. In the examples, however, a 4^^ order Runge-Kutta was 
used to numerically solve the ODEs and this worked well. The Euler method 
was used in the proof for its convenience and future work will consists of 

including the more general solution of the gradient system in the analytical 
foundation. 

It was discussed in Chapter 6 that when transfer conductances are 
introduced into the power system model the rigorous analytical foundation on 

which the swing and gradient system were based does not hold true. It was 
shown however, through an example that the stability boundary may still be 

composed solely of the corresponding stable manifolds and that if the 
shadowing method is applied it would work satisfactorily. 

The results from the analysis of transient stability for two large-scale 
realistic power system models were presented in Chapter 7. In the seven of 

the nine cases in which the exit point method was applied failure occurred. 
When the shadowing technique was applied the controlling UEP was 

determined in all nine cases. In each case with the controlling UEP that was 
determined by the shadowing technique the transient stability assessment 

obtained firom the TEF method compared satisfactorily with time simulation. 
In ever case analyzed it was shown that the finite sequence of points 
produced by the shadowing technique seemed to numerically converge to the 
controlling UEP. 
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APPENDIX A 

A.1 Dérivation of the Swing System with Damping 

In this section the derivation of the swing equations in the center of 
inertia reference frame is given. Equations similar to equations (2.1) are 

repeated here and note that damping is added and there are no transfer 
conductances. 

Mi 6)i = Pi-Pei-Di cûi (A.1.1) 

5i = coi i = 1, 2,..n 

where 

P i = P ^ i - E f G i i  

Pei = X sin. 
j = i  

j 7ti 

Note that everything in this section is defined in Chapter 2, however, 

there are a few differences as hsted below. 

Di - damping constant, Di > 0. 
Cûi - machine rotor speed deviation from synchronous speed. 

Uniform damping is assumed, so that for every machine in the system 

where c is a constant. 
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Following the steps as shown in Chapter 2, equations (A.1.1) in the 
COI variables are 

Mi = Pi - Pei - Di coi - % [Pj - Pej - Dj coj) (A. 1.2a) 
^ T j ^ l  

di = ini (A. 1.2b) 

Equation (A. 1,2a) can be simplified. 

ini=0}i-C0o=>0^ = (Hi+ û)o 

Mi (Hi = Pi - Pei -DiUSi- Di ttb 

Mi 
n 

M: A • ^ Z 4 «5 + § E 4 (A.1.3) 
J = 1  J = 1  J = 1  

Three of the four terms in equation (A.1.3) associated with damping can be 

eliminated. 

- Di (Oo = - MiC (Do 

j = 1  j  =  1  

Dj at, = at, M, c 

Since 
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2, M j i U j ^ O  
i = i  

Equation (A. 1.2a) can now be written as 

n 

=  { P j - P e j }  
MTj ^ I  

This equation can be further simplified since Cy = Cji and sin(6i- 6j) = - sin(6j 
- 6i) , then 

f i/.-f i i ^ j = 1 ^ J = 1 k = 1 
k 

Also, since there are no transfer conductances, the total power injected in to 
the system must be zero. 

i = l  

Equation (A. 1.2) can then be written as 

Mi tni = Pi- Pei - Di UJi 

6i = GJi i= 1, 2,n-1 

A.2.1 Derivation of V for the Swing System 

The following section shows the derivation of 



www.manaraa.com

189 

n-l 
y - l ,  

ddk dCJk 
(A.l) 

The energy function from Chapter 3 is 

n-l 
V= § % Mi (Di + + ... + dn-iMn-lf 

n-l 

2 M n  

X (^t • + • • • + {dn-i - 9n.l)Mn.j) 
i = l  

n-l n-l 
S Z Cij(cOS Oij - COS dij) 
i=lj = i+1 

n-l 
- ^ Cin COS |0{ + + ... + 9n.lMn-l)j 

n-l 
+ X Cin COS [0/ + J^iSlMi + ... + eliMn-l^j (A.2) 

The derivation of (A.l) will be put into three subsections, 

Subsection 1 

Derivation of 

k n-l] 
ddk 

The terms associated with ^ in equation (A.2) are constant so the 

derivation turns into 
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dV d 

ddk ddk 

n-l 

P i  O i  +  . . .  +  d n - l M n - l ]  
L t = ; 

ddk 

ddk 

n-1 n-1 

^ ^ COS dij 
i  =  l j = i + l  

n-1 

- ^ Cin COS + • • • + dn-lMn-l)^ 

Term by term 

dOk 

n-l 

• S Pi + "" + Qn.lMn.l) 
_  i - 1  

dOk 

n-1 

• X ^in COS + -^(OiMi + ... + dn-lMn-l]^ 

' k-1 
• X Q» cos j0£ + + ... + 

dOk 

+ Ckn COS Idk + + ... + 6n.lMn.l)\ 
ddk ^ I 

dOk 

n-1 

- X (^in COS Idi + + . . . + dn.iMn-l)] 
L i = k+l \ Mn I 

= Cm sin + -^{eiMi + ... + On-lMn-l)^ 

+ Ckn sin ̂ 6k + + • • • + On-lMn-l)^ 
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Cin sin + • • • + On-iMji 

% Cin sin + • • • + On-lMn.^ 

+ Ckn sin + • • • + On-jMn-lfj 

' X sin + • • • + On-lMn-l) - 6i 

+ Ckn sin ^Gk + -^—{diMj + • • • + 6n.lMn-l^ 

n-1 n-1 

X X ^ij COS % 
_ i = 1 j = i+1 

V 

k-i 
s 
t = / 

k-i 

X Cij cos [di - Oj) + Cik cos [Oi -
J - (+^ 

ddk 

dOk 

k-1 n-1 

X X cog (% - Oj) 
_ i = 1 j = A+7 

71'1 
X C^yr COS (0^ - 0y) 

- > k+l 

dOk 

n-1 n-1 

X X Cijcos{di-dj} 
i = A+/ j =i+l 
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The individual terms are 

d 

ddk 

h-1 h-1 
• X S ^ij COS (di - dj) 

i n 1 j n i+1 
= 0 

d 

ddk 

k-1 
X Q/' COS [Oi • dk) 

i= 1 

k-1 
= - s Cik sin (di 

i= 1 

d 

dOk 

k"! Tt'l 
X X Cij COS (di - ej 

i = 1 j = k+1 
= 0 

d 

ddk 

Tl'l 
• X CKJ COS (OK - DJ) 

j = /s+i 

n-l 

= X 
j = &+) 

71-1 

X X ^ij COS (di - dj) 
i = A+2 j = t+7 

= 0 

Therefore, 

d 

ddk 

n-1 n-1 

• X X CIJ COS d, 
_ i = 1 j = i+1 

V 

k-1 
- X Cik sin (^i - dk)+ % Ckj sin (% -

i ~ l  j ~  k - ¥ l  

n-l 

k'l n-l 

•• X Cki sin [dk • di)+ 2 Cki sin (% - di) 
i = 1 i= k+1 

n-1 

•• % Cki sin (dk - di) 
i = 1 
i ^k 
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Combining all terms 

•  X  c - t i [ • ^ ( e i M i + . . .  +  O n - l M n - l ] -  d i  

+ Ckn COS ^Ofi + + • • • + dfi-l^n-l)^ 

n-1 

+ X ^ki sin (Ok • di) 
i  =  l  
i  ̂  k  

dV 

ddk 
=  - P k +  % sin {Ok - 0j) 

t =  7  
i nk 

+ Mk 
Mn 

n-1 

P n -  X r 4 + Qji-l^n-l) " ^i| 
i  =  l  ^  /  

as defined in Section 3.1 can be used here and the above can be 
written as 

However, gn is defined by equation (3.7) so the above can be written as 

-^= +'" +gn-l) 

ddk 
(A. 

'  • M^isi + •• • + gk-1 + gk+1 -I + gn-l) 
dO/i * ^n' 
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Subsection 2 

Derivation of 

dV 

dtUk 
k G [7, • • •, n-ï] 

dnJk 

n-I ~ 
Mi int + + ... + tUn-iMn-if 

= MktUk + ̂ (mMi + • • • + nJn.lMn.l) 
jyin 

— = MkWk + +...+ aJn-lMn-l) 
dGJk Mn 

(A.4) 

Subsection 3 

Derivation of 

njk k e\_l, • ••, Ti-i\ 

% = hk _gk-Dk(i^k 
Mk Mk 

(A.5) 

The total time derivative can now be written as 

n-l 

V ' l  
i  s  1  

•  M i  •  { § ] + • • • +  g n - l )  OJi 
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n-1 

isz 1 
MilDi + + • • • + CJn-lMn-l) 

gi -  Dj tUj 

Mi 
(A.6) 

Equation (A.6) can be put into a more convenient vector - matrix 
notation. 

where 

dV 

de 

do dGJ 

V=[- M^gf m + [m® tnf[M'^ h] 

y = [- M® gf «EJ + [m® mf M-^[g-D Qj] 

0 0 
Ml 

0 0 

II 

0 0 

0 0 1 

-

0 0 
Mn-l.  

Di 0 0 
D = 0 0 

0 6 Dn-1 .  

'dV dV F 

de _dej 1 

1 + Mj 

Mn 

Mn.-l 

Mn 

Ml 

Mn 

2 4. Mn-J 
Mn J 

gl 

ign-1 J 

=  - M ^ g  (A.7) 

The elements of M® can be defined as 
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dG5 

Mn-l M J 

Mn 

1 + 

dm 

M' 
M, 
-  i f  i  ̂ j j  

dV dV 

dGTn.i_ 

Mt Mn-l 
Mn 

m 

- ̂ n-l • 

= M'°m 

The elements of can be defined as 

M^= 
Mi Mj 
Mn 

if iVj 

The continuation of the derivation in vector-matrix form is 

V = [- M^ ̂  C7+ [m® f [M'^ g] - [M® {^[M'^ D CJ] 

y  =  [ -  M ®  g f  C D  +  [ M - ^  g f [ M ^  c j ]  -  [ m ®  G j f  [ m - ^  D  ® ]  

V "  =  g ' ^ l -  M ^ Y  t n  +  g ^ [ M - ^ Y M ' ^ m -  C 7 ^ [ [ M ® f  D ]  I D  

y  =  g ^ [ [ -  M ^ Y  +  [ M ' ^ Y M ^  c j -  C 7 ^  [ M ^ M ' ^  d ]  m  
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Note that since M is diagonal 

y = g^[[- + M-^ M®]cT- CJ^[[M®f M'^D] m 

M' 
i + 

if i 9ij 2 Mi Mj _ Mj 
Wi Mn 

Therefore, if terms of these matrices are added 

[[- + M-^ M®] = 0 

The time derivative simplifies to 

V'=- M-'D]® 

Define 

= M-'D 

Equation (A.8) becomes 

V"= - CJ^M" CJ 

(A.8) 

(A.9) 

The matrix M" has the following form 
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Di\l + M Ml Dn-l 
Mn 

M" (A. 10) 

Mn-l D] 
Mn 

The elements of M" are 

A,2J2 Derivation of the Negative DelSmteness of V for the Swing System 

It is shown in this section that 

This can be shown by showing that M" is a positive definite matrix [62]. 

Property A. 1.1 

The matrix is positive definite. 

Proof: 

In order to show this it must be shown that 

V = - v ^ M " v < 0  (A.11) 

x ' ^ M ^ x > 0  V x 9 ^ 0  

Define the matrix M'" to be 

M] • • • M] 
M'" = 

.Mn-l Mn-l 
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so that 

Mn 

and then 

X =x'^Ix + -^x'^M'' X 
Mn 

Clearly 

x ' ^ l x > 0  V x ^ O  

It can be shown that 

- ^ x ' ^ M ^ x > 0  V x i ^ O  
Mn 

All of the columns of the matrix M'' are identical. This shows that 
this matrix has rank of one and will have all zero eigenvalues 
except one. This one non zero eigenvalue An-; is 

n-1 

K.-1 - X Mi>0 
i= 1 

If Xn-i is in fact an eigenvalue of M'' then det( M'' - I ) = 0. 

M ' - X n - l  I  =  
- Mg - - - Mn-l 

Mn.l 

Ml 

- M J - • • • - Mn-2. 

The elements of [Af'' - Xn-i F] are 
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[ W - K - l l ] ] '  

n-1 
Z if i=;| 

k = 1 
k 

Mi if i 

It is easily seen that the first row of [M*" - Xn-iT\ is equal to the 

negative summation of row 2 through row n-1. Hence, [ilf • Xn-i 7] 
is singular which implies that det( M'" - J ) = 0. It is seen from 

t h i s  t h a t  i s  p o s i t i v e  s e m i - d e f i n i t e  [ 6 2 ]  s i n c e  t h e  f i r s t  n - 2  
eigenvalues are zero and the (n-1)^^ eigenvalue is positive. 

Since 

-^x^M''x>0 Vx 7^0 aiidx'^ IX > 0 VXT^O 
Mn 

then 

X = x"^ I x +-^x"^ M"" X > 0 Vx9i^0 
Mn 

Which implies that M®is positive definite. 

Property A. 1.2 
The matrix M" is positive definite. 

Proof: 

Since the matrix is positive definite then the determinant of each 

principal minor of must be positive. This is a necessary and 
sufficient condition for a matrix to be positive definite [62]. 

There exist a theorem in [63 p. 313] that states if any column of a 

matrix A is multiplied by a constant a then the new determinant of 
this modified matrix is a-det(A). 
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The matrix M® was defined earlier in this section, is given in (A. 10) 

if the each element of the column of matrix M® is multiplied by Di 

then the resulting matrix is M" as given in matrix equation (A. 10). 

For Î = [i, . . ., 7i-i] multiply each element of the column of the 

matrix M® by Di. The resultant matrix as stated above is M". Since 
Di> 0 the determinant of each principal minor of M'' remains 
positive which shows that M" is positive definite. • 

The proof is given in [64] but needs a slight modification. The proof is 
based on Theorem 1 fi-om [65]. 

Let H be the symmetric matrix 

where N = M is symmetric and is shown below to be positive definite. 

The matrix is defined in Section A.2.1 of this chapter and the 
matrix N can be written as 

A.3 Proof of Theorem 3 .̂3 

0  - N ' ^  

This matrix can be manipulated to be 

N = M + - ^ M ' ^ U M  = m + M ®  

Mn 
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where the matrix U is defined as 

Uij = 
1  i f i = j \  

The matrix U has n-2 eigenvalues that are zero and one 
eigenvalue that is equal to (n-1). Therefore it is easily seen that 
the matrix Mi is positive semi - definite and since the matrix M 
is positive definite the matrix N is also positive definite. 

From Chapter 3 the Jacobian matrix of the swing system is 

e^ss — 
0 I 

M'^ ^ - M'^D 
96 

and note that the lower lefl; partition of the matrix Jss is 

dd 

Since 

the lower left partition can be written as 

de 
gs 

Substituting this into the Jss matrix 

J s s H  +  H J l  =  0 0 [at-^F 

D M-^ 
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0 0 

M'^ D + N'^ D M'^. 0 

Theorem 1 from [65] states that if H is nonsingular and has no 
eigenvalues on the imaginary axis and if [jgs H + H is positive semi -

definite then nu(H) = riuCJss)- Where iiu(H) is the number of eigenvalues of H 
which have a positive real part. J'jg is nonsingular since Jgg is nonsingular 

and -N~^ is negative definite since N is positive definite. The eigenvalues of H 
are the eigenvalues of together with the eigenvalues of -N-^. The 

eigenvalues of -N'^ all have negative real part since -N~^ is negative definite. 
Also, a well known fact is that since Jgg is nonsingular nu(Jgs) = nu(Jgi). 

Therefore, nJW = nJJgs)-

In order to show that [jgs H + H is positive semi - definite it must be 
shown that [M'^ DN'^ + N'^ D M'^] is positive semi - definite. 

Let 

= \M-^ D D 

An explicit form for can be foimd in [66] and is 

Since uniform damping is assumed (i.e., Dj/M; = c) 

M ^  =  c N - ^  + N - ^ c  =  2 c N - ^  

Since N is positive definite and c > 0, 2 c is also positive definite. 
Therefore, [jss H + H is positive semi - definite and nJH) = nJJgs)- • 
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A.4 Derivation of cfeCC -̂ 6 )̂ a+ ̂ )ld(x 

From Section 3.1 the equation for^j is 

gi(6) = Pi- % Cij sin - 6j) 
J = i  
j * i  

Cin sin + M262 + • • • + Mn-ldn-l]^ 

Let 

i2ij= Oi - dj + di • 6j) 

n-l 

Ai = (e[ -6"; + ̂  E Mj(e; - ej) 

m ® = rAr- % MjOj 
n-l 

Substituting Q = (Q'' - 6^) a a >0, the equation gi becomes 

n-l 

gidd'' - d') a + e') = Pi - X Cij sin (ûij a+ e - -  GJ) 
J = J  

J ^i-

- Cin sin {Ai a + di+ m®) 

The derivative with respect to a becomes 

n-l 
dgidO'^ - a + 6^)Ida-- ^ Qy Cij cos (i2y a + 0® - 0/) 

j = i  

j * i  

- AI CIN COS {AI a+ 6I+ M^) 
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APPENDIX B 

B.l Presentation oftheS-macfaine Power System 

This section is a description of the 3-machine system which is taken 
from [30]. There is a small difference in that the bus numbering in this 

system is not the same as the bus numbering in the system in [30]. Figure 
B.l is an one-line diagram of the 3-machine system. This system consists of 3 

generators, 9 buses, 6 transmission lines, 3 transformers and 3 loads. The 
data for this system based on a system base of 100 MVA is shown on the one-

line diagram and is the base case of the system. The data that is present are 

• line impedances in pu, 

• line capactive charging suseptances in pu, 

• transformer reactances in pu, 
• real and reactive loads in pu, 

• real and reactive generation in pu at the terminal of each 
generator, 

• voltage magnitude in pu and angle in degrees at each bus. The 
voltages represent the system at equilibrium and are a result of a 
power flow calculation, 

• buses 1 and 2 are PV buses and bus 3 is the slack bus. 

Table B.l contains generator data, namely the normalized inertia 

constant H, the corresponding M constant and the transient reactance x'd\ 
damping is not consisdered. 
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Figure B.l One-line diagram for the base case of the 3-machine system 

Table B.l Machine data for the 3-machine system 

Generator H (seconds) M (second^) x'd (pu) 

1 3.01 0.0160 0.1813 

2 6.40 0.0340 0.1198 

3 23.64 0.1254 0.0608 

All values are based on a system base of 100 MVA 

The values of M are calculated on asystem frequency of 60 Hz 
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B.2 Reduced S-machine Power System 

In this section the data for the reduced 3-machine system is presented. 

The 3-machine is reduced to the internal generator bus which is the fictitious 
bus behind the transient reactance x'd- The internal generator voltage Ei can 

be calculated since the voltage and the real and reactive power at the 
generator terminal bus is known. The terminal buses in the system are 
buses 1, 2 and 3 and after the internal voltage is calculated the terminal bus 

is removed and the corresponing internal bus is given the same bus number. 

Table B.2 contains the values of the reduced admittance matrix {Ybus) and 

these values are of the form Yij = Gy + jBij. Table B.3 contains the values of 
the internal bus voltage of each generator. Tables B.4 and B.5 contain the 

values of Cy = EiEjBij and Dy = EiEjGij respectively. 

Table B.2 Admittance matrix data for the base case of the reduced 
3-machine system 

Generator 1 2 3 

1 0.2770 -j2.3681 

2 0.2133 +jl.0879 

3 0.2069 +jl.2256 

0.2133 +jl.0879 0.2069 + jl.2256 

0.4200 -j2.7239 0.2871 +jl.5129 

0.2871 +jL5129 0.8455 -j2.9883 

All values are in pu 

Table B.3 Internal generator voltages for the base case of the reduced 
3-machine system 

Generator Voltage (pu) 

1 

2 

3 

1.0170 Z13.1665° 

1.0502 Z 19.7317° 
1.0566 Z2.2716° 
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Table B.4 Values of Cu for the base case of the reduced 3-niachine system 

Generator 1 2 3 

1 -2.4492 1.1619 1.3170 

2 1.1619 •3.0042 1.6789 

3 1.3170 1.6789 -3.3364 

All values are in pu 

Table B.5 Values of Da for the base case of the reduced 3-machine system 

Generator 1 2 3 

1 0.2865 0.2278 0.2252 

2 0.2278 0.4632 0.3186 

3 0.2252 0.3186 0.9440 

All values are in pu 

B.3 Unloaded, Reduced 3-machiiie Power System 

This system is a modification of the reduced 3-machine system and is 

quite simple and unrealistic. The modification are 

• line resistances are set to zero, 
• aU real and reactive loads are set to zero, 

• real power generation is set to zero for each generator. 

Since there are no real power loads and no line resistances there are no 

transfer conductances in the resultant reduced admittance matrix and 
hence, there are no real losses in the system. Also, since buses 1 and 2 are 

PV buses and bus 3 is a slack the terminal voltages are set before a power 
flow calculation is made. These terminal voltages where changed and are 

shown in Table B.6. Data that is similar to the data given for the reduced 3-
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machine system in Section B.2 is given for this system. Table B.7 contains 
the values of the reduced admittance matrix (Ybus) and these values are of the 

form Yij = Gij Since there are no transfer conductances all Gij are zero 
and thus, so are all Dij. Table B.8 contains the values of the internal bus 

voltage of each generator. Tables B.9 contains the values of Cy = EiEjBij. 

Table B.6 Terminal bus voltages for the unloaded, reduced 
3-machine system 

Generator Voltage (pu) 

1 1.0550 Z 0.00° 

2 1.0350 Z0.00° 

3 1.0400 Z0.00° 

Table B.7 Admittance matrix data for the unloaded, reduced 
3-machine system 

Generator 1 2 3 

1 •j2.2668 jl.2252 jl.4241 

2 jl.2252 •j2.5398 jl.7754 

3 jL4241 j1.7754 -j2.5646 

All values are in pu 
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Table B.8 Internal generator voltages of the unloaded, reduced 
3-machine system 

Generator Voltage (pu) 

1 0.9830 Z0.000° 

2 0.9724 Z0.000° 

3 1.0069 Z0.000° 

Table B.9 Values of Cu for the unloaded, reduced 3-machine system 

Generator 1 2 3 

1 •2.1904 1.1712 1.4096 

2 1.1712 -2.4016 1.7384 

3 1.4096 1.7384 -2.6002 

All values are in pu 
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APPENDIX C 

Table C.l Machine data and initial generating conditions for the 
IEEE 50-generator system 

Initial real power Inertia Transient 
Gen. Bus generation constant H reactance 
num. num. Bus name (MW) (seconds) (pu) 

1 60 LAK 187A 100 51.0 1.41 0.4769 
2 67 BEC 287A 100 1486.0 52.18 0.0213 
3 79 MCK1032 100 250.2 6.65 0.1292 
4 80 HIG1036S 100 47.0 1.29 0.6648 
5 82 CHP1262 100 70.0 2.12 0.5291 
6 89 CAN1751T 100 673.0 20.56 0.0585 
7 90 AGU1752T 100 22.0 0.76 1.6000 
8 91 ARN1754T 100 64.0 1.68 0.3718 
9 93 BRU1771318.5 700.0 115.04 0.0240 

10 94 CAM17761 100 300.0 17.34 0.0839 
11 95 CAR1777T 100 131.0 5.47 0.1619 
12 96 CHE17801 100 60.0 2.12 0.4824 
13 97 DEC1782T 100 140.0 5.49 0.2125 
14 98 DES17831 100 426.0 13.96 0.0795 
15 99 DOU1793T 18 200.0 17.11 0.1146 
16 100 HOL17961 100 170.0 7.56 0.1386 
17 101 LAK18068 100 310.9 12.28 0.0924 
18 102 LAM18071 100 2040.0 78.44 0.0135 
19 103 LON1815T 100 135.0 8.16 0.1063 
20 104 NAN18205 100 2000.0 73.85 0.0122 
21 105 PIC18252 100 1620.0 84.39 0.0208 
22 106 PIC18263 100 1080.0 56.26 0.0312 
23 108 SAU18311 100 800.0 30.43 0.0248 
24 109 STW18435 100 52.0 2.66 0.2029 
25 110 BRU1853118.5 700.0 115.04 0.0240 
26 111 NAN18563 100 2000.0 73.85 0.0122 
27 112 LAK18637 100 300.0 12.28 0.0924 
28 115 18C2007E 100 2493.0 97.33 0.0024 
29 116 18H20160 100 2713.0 105.50 0.0022 
30 117 19B2051R 100 2627.0 102.16 0.0017 
31 118 19M20792 100 4220.0 162.74 0.0014 
32 119 AK2152 100 8954.0 348.22 0.0002 
33 , 121 CHA2184G 100 2997.0 116.54 0.0017 
34 122 DUN22033 100 1009.0 39.24 0.0089 
35 124 HNT2264G 100 3005.0 116.86 0.0017 
36 128 BR.24593 100 12963.0 503.87 0.0001 
37 130 BER26011 100 5937.0 230.90 0.0010 
38 131 CLV2609P 100 28300.0 1101.72 0.0001 
39 132 ERI2G16. 100 3095.0 120.35 0.0016 
40 134 ALL2651 100 20626.0 802.12 0.0003 
41 135 BD 26524 100 5982.0 232.63 0.0008 
42 137 CAP2655 100 12068.0 469.32 0.0004 
43 140 SPP2669H 100 23123.0 899.19 0.0003 
44 142 01A2679R 100 24449.0 950.80 0.0003 
45 143 03D2699E 100 5254.0 204.30 0.0023 
46 144 3BR2719 100 11397.0 443.22 0.0004 
47 145 8B02739 100 14118.6 518.08 0.0018 
48 136 CAL26541 100 51950.0 2018.17 0.0001 
49 141 VER2674N 100 37911.0 1474.33 0.0001 
50 139 SPP2666N 100 56834.0 2210.20 0.0001 

Per-unit quantities are based on a ZOO MVA system base 
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Table C.2 Machine data and initial generating conditions for the 
NSP 161-generator system 

Initial real power Inertia Transient 
Gen. Bus generation constant H reactance 
num. num. Bus name (MW) (seconds') (pu) 

1 39 COOPER1G22.0 772.0 34.60 0.0437 
2 53 GENTLM2G24.0 564.1 23.51 0.0297 
3 55 GENTLM1G23.0 581.3 29.27 0.0322 
4 283 FT CA31G22.0 465.0 28.59 0.0559 
5 284 NEBRC31G18.0 585.0 20.67 0.0544 
6 287 SUB1253G13.8 90.7 4.25 0.1797 
7 288 SUB1254G15.0 239.0 15.69 0.0628 
8 415 FTPECK5G13.8 42.0 1.43 0.7891 
9 458 GARISN2G13.8 96.0 5.55 0.2322 

10 459 GARISN3G13.8 96.0 5.55 0.2322 
11 460 GARISN4G13.8 80.0 3.18 0.3815 
12 542 BGBND12G13.8 118.0 3.66 0.2624 
13 543 BGBND34G13.8 118.0 3.66 0.2624 
14 545 BGBND78G13.8 40.4 3.66 0.2624 
15 547 FTRDL34G13.8 261.0 9.32 0.1447 
16 556 OAHE2-3G13.8 196.0 10.26 0.1189 
17 557 OAHE4-5G13.8 196.0 10.26 0.1189 
18 575 GAVINS1G13.8 92.0 3.38 0.3850 
19 603 ANTEL31G24.0 373.0 15.95 0.0540 
20 607 ANTEL32G24.0 380.0 15.95 0.0540 
21 611 LELAN32G20.0 235.0 21.91 0.0801 
22 618 LARAM31G24.0 424.6 18.98 0.0377 
23 748 CENTER2G20.0 309.0 15.95 0.0583 
24 749 CENTER1G22.0 234.0 6.90 0.0950 
25 815 COYOTE 1G24.0 305.0 15.10 0.0633 
26 845 HESKET2G13.8 59.8 3.14 0.3639 
27 912 BIGSTN1G24.0 379.0 15.10 0.0644 
28 1365 TH0MS0N7 115 64.0 2.20 0.2511 
29 1474 BOSWE43G20.9 267.0 11.06 0.0531 
30 1475 BOSWE44G22.8 510.6 15.19 0.0515 
31 1476 BOSWE71G14.4 45.0 3.06 0.2561 
32 1477 BOSWE72G14.4 45.0 3.06 0.2561 
33 1521 COAL 41G22.0 531.3 13.21 0.0420 
34 1522 COAL 42G22.0 357.4 13.21 0.0420 
35 1523 STANT41G18.0 158.1 7.12 0.1302 
36 1618 PR IS31G20.0 530.0 20.96 0.0546 
37 1619 PR IS32G20.0 530.0 20.96 0.0546 
38 1680 MNTCE31G22.0 559.0 23.32 0.0578 
39 1681 SHERC31G24.0 707.5 20.08 0.0356 
40 1682 SHERC32G24.0 707.5 20.08 0.0356 
41 1683 SHERC33G26.0 817.0 24.57 0.0256 
42 1780 KING 31G20.0 500.0 24.96 0.0494 
43 1781 BLK D71G13.8 39.2 3.41 0.2677 
44 1782 BLK D72G13.8 128.9 4.20 0.2000 
45 1784 BLK D74G18.0 171.5 7.51 0.2005 
46 1785 HIBRD75G13.8 94.7 5.34 0.1855 
47 1786 HIBRD76G18.0 170.4 6.89 0.1198 
48 1787 RIVRS77G14.0 117.0 2.62 0.2632 
49 1788 RIVRS78G22.0 226.8 9.29 0.0996 
50 1831 BAYFRNT888.0 62.6 3.94 0.2266 
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Table C.2 Continued 
Initial real power Inertia Transient 

Gen. Bus generation constant H reactance 
num. num. Bus name (MW) (seconds) (pu) 

51 2016 FOXLK53G13.8 60.0 3.04 0.2290 
52 2067 LANS5 4G22.0 200.0 8.08 0.1062 
53 2058 LANS5 3G22.0 61.0 5.40 0.1370 
54 2085 BVRCH52G20.0 165.0 9.02 0.1342 
55 2122 GENOA53G24.0 310.0 14.40 0.0840 
56 2140 ALMA5 5G14.4 60.0 3.74 0.1990 
57 2142 ALMA5 6G24.0 330.0 15.18 0.0772 
58 2343 NEAL 3G22.0 1016.5 32.53 0.0206 
59 2446 ARNOLD1G22.0 499.0 29.59 0.0535 
60 2454 PR CRK4G18.0 100.0 6.65 0.1131 
61 2591 CBLUF33G24.0 675.0 19.76 0.0298 
62 2605 BURLIN1G20.0 772.0 26.41 0.0231 
63 2710 LOUIS31G24.0 764.3 29.20 0.0286 
64 2901 MPW 9G20.0 199.2 8.38 0.0710 
65 3001 BD 1G14.4 43.0 4.29 0.3604 
66 3002 BD 2G14.4 43.0 4.29 0.3732 
67 3003 BD 3G16.0 110.0 4.52 0.1464 
68 3004 BD 4G16.0 117.0 4.52 0.1464 
69 3005 BD 5G15.0 134.0 5.45 0.1236 
70 3006 BD 6G18.0 205.4 10.40 0.0840 
71 3010 POPLAR1G18.0 575.0 21.87 0.0398 
72 3030 SQUAW 1G14.4 290.0 15.14 0.0822 
72 3032 SQUAW 5G14.4 60.0 8.08 0.1335 
74 3588 JNPG1-6G4.00 244.0 6.67 0.0845 
75 3590 KLSY1-7G13.8 200.0 10.76 0.0929 
76 3591 GRSTC12G13.8 290.0 25.35 0.0437 
77 3595 PNPL1-6G13.8 69.0 2.53 0.4043 
78 3596 GTFL1-6G11.0 106.0 3.06 0.2460 
79 3598 7SIS1-6G11.0 100.0 5.47 0.1861 
80 3600 SLPL1-8G6.90 48.0 2.49 0.4075 
81 4015 QUAD Y1G18.0 1538.0 69.57 0.0192 
82 4850 HAVANA 138 8889.9 517.56 0.0025 
83 4852 EDGEWATE 345 3452.8 191.59 0.0064 
84 4885 GRAND TW 138 315.0 24.67 0.0514 
85 4888 MARION 69.0 188.6 14.78 0.0859 
86 4889 JOPPA N 161 1014.5 79.47 0.0160 
87 4890 JOLIET 345 2168.0 169.82 0.0075 
88 4891 CRAWFORD 345 773.5 60.59 0.0209 
89 4892 WAUKEGAN 138 750.0 58.75 0.0216 
90 4894 TECHE 4 138 8820.9 703.46 0.0018 
91 4903 ZION 345 1040.0 45.12 0.0417 
92 4905 BRAIDWD 345 1090.0 56.75 0.0276 
93 4949 ROCK RIV 138 11594.5 714.39 0.0027 
94 4963 NELSON D 138 185.0 15.94 0.4122 
95 4964 PULLIAM 115 199.0 69.10 0.2986 
96 4966 WESTON 345 386.0 21.26 0.0664 
97 4970 DRESDEN 138 772.0 170.08 0.0553 
98 4971 DRESDEN 138 773.0 170.08 0.0470 
99 4972 NEWTON 138 648.0 85.04 0.0209 

100 4986 ZION 345 1040.0 45.12 0.0417 
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Table C.2 Continued 
Initial real power Inertia Transient 

Gen. Bus generation constant H reactance 
num. num. Bus name (MW) (seconds) (pu) 
101 4987 POWERTON 345 1358.0 51.58 0.0126 
102 4993 BRAIDWD 345 1090.0 56.75 0.0276 
103 4994 POINT BE 345 1500,0 62.11 0.0277 
104 5007 lATAN 7 345 11565.3 786.72 0.0019 
105 5870 DOLHIL 6 230 3053.2 231.03 0.0053 
106 5871 LEWIS 4 138 4627.8 351.18 0.0035 
107 5872 CON-W 5 161 1543.0 116.75 0.0105 
108 5873 LKPAUL 269.0 41.2 3.12 0.3930 
109 5874 PENSA 269.0 2354.8 180.71 0.0068 
110 5875 RIVSIDE4 138 4133.9 312.81 0.0039 
111 5876 NC 230 6 230 1223.8 92.60 0.0132 
112 5877 S00NR4 138 2587.6 195.80 0.0063 
113 5878 ARSHILL4 138 3068.1 257.38 0.0048 
114 5879 OZARK S269.0 764.0 57.80 0.0212 
115 5880 HUGO PP4 138 496.0 37.53 0.0327 
116 5882 ST0CKTN5 161 60.0 4.54 0.2700 
117 5883 BULL SH5 161 891.0 67.42 0.0182 
118 5884 SIKESTN5 161 177.0 13.39 0.0915 
119 5888 PARS0NS4 138 172.8 14.03 0.0874 
120 5891 OZ DAM 5 161 386.0 31.02 0.0395 
121 5892 NEWMAD 5 161 600.0 45.40 0.0270 
122 5960 NEASN 7 345 900.0 135.31 0.0223 
123 5961 GILL 4 138 195.4 83.99 0.0689 
124 5970 S00NR7 345 1014.4 125.98 0.0151 
125 5971 NEWMAD 7 345 592.0 121.32 0.0616 
126 5977 LAKE RD5 161 203.0 30.33 0.1525 
127 5981 NEASN 4 138 630.0 116.65 0.0519 
128 5984 ISES 8 500 790.0 165.64 0.0357 
129 5985 WH BLF 8 500 1580.0 132.98 0.0179 
130 5986 ARKNU 8 500 1628.1 177.31 0.0255 
131 5987 GGULF 8 500 2424.0 298.62 0.0176 
132 5988 WILSON 8 500 601.0 291.62 0.0644 
133 5989 CAJUN2 8 500 1554.7 279.96 0.0163 
134 6534 LAMBTON 220 1040.0 78.37 0.0135 
135 6536 BECK2 DK 220 863.0 40.43 0.0284 
136 6552 ST LAWRE 220 832.0 30.43 0.0245 
137 6609 ATIKOKAN18.0 171.0 15.85 0.1000 
138 6900 8BR0WNPR 4449.2 207.92 0.0051 
139 6935 06KYGER 15388.5 1041.38 0.0010 
140 6936 lOCULLEY 3249.4 215.13 0.0049 
141 6937 07MEROM 16372.6 1075.13 0.0010 
142 6939 04ASHTBL 5519.3 362.44 0.0029 
143 6940 05OPOSSC 13638.2 935.52 0.0011 
144 6941 05DUMONT 5273.9 366.44 0.0029 
145 6942 18ALC0NA 14820.0 973.18 0.0011 
146 6944 LINDEN G 4886.4 320.87 0.0033 
147 6945 8BOWEN8 16486.9 1085.91 0.0010 
148 6946 8HATCH8 10663.1 700.21 0.0015 
149 6947 6BARRY 5328.4 349.90 0.0030 
150 6948 6CAPE K 11348.7 745.22 0.0014 
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Table C.2 Continued 
Initial real power Inertia Transient 

Gen. Bus generation constant H reactance 
num. num. Bus name (MW) (seconds) (pu) 
151 6949 6 A M  W I L  6893.3 453.39 0.0023 
152 6950 ALLEN 15871.1 1142.92 0.0009 
153 6951 3CAE0LNA 13154.9 917.04 0.0012 
154 6952 5PARADIS 10007.0 678.13 0.0016 
155 6953 ORRINGTN 13883.6 911.69 0.0012 
156 6954 ESSEX 6894.6 452.75 0.0023 
157 6955 E RIVER 7461.0 503.91 0.0021 
158 6956 BRDR CTY 9733.1 640.30 0.0017 
159 6502 PINARD J 220 15507.3 1271.19 0.0013 
160 6938 OIPTMART 24269.5 1596.32 0.0007 
161 6943 PEACH BT 35308.8 2329.88 0.0005 

Per-unit quantities are based on a 700 MVA system base 
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